首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multidimensional analysis of instant coffee and barley beverage samples using size exclusion chromatography (SEC) combined with a dynamic surface tension detector (DSTD) and a UV-vis absorbance detector (UV) is reported. A unique finding of this study was the action of the tetrabutylammonium (TBA) cation as a modifying agent (with bromide as the counter anion) that substantially increased the surface pressure signal and sensitivity of many of the proteins in the chromatographically separated samples. The tetrabutylammonium bromide (TBAB) enhancement of the surface pressure signal was further investigated by studying the response of 12 commercial standard proteins (α-lactalbumin, β-lactoglobulin, human serum albumin (HSA), albumin from chicken egg white (OVA), bovine serum albumin (BSA), hemoglobin, α-chymotrypsinogen A, cytochrome C, myoglobin, RNase A, carbonic anhydrase, and lysozyme) in buffer performed using flow injection analysis (FIA) coupled with the DSTD with and without various concentrations of TBAB. The FIA-DSTD data show that 1 mM TBAB enhances sensitivity of HSA detection, by lowering the limit of detection (LOD) from 2 mg/mL to 0.1 mg/mL. Similarly, the LOD for BSA was reduced from 1 mg/mL to 0.2 mg/mL. These FIA-DSTD experiments allowed the detection conditions to be optimized for further SEC-UV/DSTD experiments. Thus, the SEC-UV/DSTD system has been optimized and successfully applied to the selective analysis of surface-active protein fractions in a commercial instant coffee sample and in a soluble barley sample. The complementary selectivity of using the DSTD relative to an absorbance detector is also demonstrated.  相似文献   

2.
Design and development of a dynamic interfacial pressure detector (DIPD) is reported. The DIPD measures the differential pressure as a function of time across the liquid-liquid interface of organic liquid drops (i.e., n-hexane) that repeatedly grow in water at the end of a capillary tip. Using a calibration technique based on the Young-Laplace equation, the differential pressure signal is converted, in real-time, to a relative interfacial pressure. This allows the DIPD to monitor the interfacial tension of surface active species at liquid-liquid interfaces in flow-based analytical techniques, such as flow injection analysis (FIA), sequential injection analysis (SIA) and high performance liquid chromatography (HPLC). The DIPD is similar in principle to the dynamic surface tension detector (DSTD), which monitors the surface tension at the air-liquid interface. In this report, the interfacial pressure at the hexane-water interface was monitored as analytes in the hexane phase diffused to and arranged at the hexane-water interface. The DIPD was combined with FIA to analytically measure the interfacial properties of cholesterol and Brij®30 at the hexane-water interface. Results show that both cholesterol and Brij®30 exhibit a dynamic interfacial pressure signal during hexane drop growth. A calibration curve demonstrates that the relative interfacial pressure of cholesterol in hexane increases as the cholesterol concentration increases from 100 to 10,000 μg ml−1. An example of the utility of the DIPD as a selective detector for a chromatographic separation of interface-active species is also presented in the analysis of cholesterol in egg yolk by normal-phase HPLC-DIPD.  相似文献   

3.
A dynamic surface tension detector (DSTD) was used to examine the molecular diffusion and surface adsorption characteristics of surface-active analytes as a function of solution viscosity. Dynamic surface tension is determined by measuring the differential pressure across the air/liquid interface of repeatedly growing and detaching drops. Continuous surface tension measurement throughout the entire drop growth is achieved for each eluting drop (at a rate of 30 drops/min for 2 μl drops), providing insight into the kinetic behavior of molecular diffusion and orientation processes at the air/liquid interface. Three-dimensional data are obtained through a calibration procedure previously developed, but extended herein for viscous solutions, with surface tension first converted to surface pressure, which is plotted as a function of elution time axis versus drop time axis. Thus, an analyte that lowers the surface tension results in an increase in surface pressure. The calibration procedure derived for the pressure-based DSTD was successfully extended and implemented in this report to experimentally determine standard surface pressures in solutions of varied viscosity. Analysis of analytes in viscous solution was performed at low analyte concentration, where the observed analyte surface activity indicates that the surface concentration is at or near equilibrium when in a water mobile phase (viscosity of 1.0 Cp). Two surface-active analytes, sodium dodecyl sulfate (SDS) and polyethylene glycol (MW 1470 g/mol, PEG 1470), were analyzed in solutions ranging from 0 to 60% (v/v) glycerol in water, corresponding to a viscosity range of 1.0-15.0 Cp. Finally, the diffusion-limited surface activity of SDS and PEG 1470 were observed in viscous solution, whereby an increase in viscosity resulted in a decreased surface pressure early in drop growth. The dynamic surface pressure results reported for SDS and PEG 1470 are found to correlate with solution viscosity and analyte diffusion coefficient via the Stokes-Einstein equation.  相似文献   

4.
Interaction of polyacrylic acid (PAA) with bovine serum albumin (BSA) at different pH values and in a wide range of mixing molar ratios, γ = nBSA/nPAA, of components was investigated by size-exclusion high performance liquid chromatography with on-line refractive index, UV, light scattering and viscometer detectors. The results revealed the formation of stable water-soluble polymer-protein complexes at pH 5.0. For the soluble complexes thus formed, the number of the bound BSA molecules with one PAA molecule was expressed by a Langmuir-type equation as a function of the amount of excess BSA existing free in the solution. At saturation, one BSA molecule is bound to about 48 acrylic acid residues.The γ-dependencies of molecular properties and structural parameters (molecular weights, molecular-weight distribution, radius of gyration, and the Mark-Houwink equation constants) of aqueous solutions of polycomplex particles have been studied. It has been concluded from these results that the complex molecule is formed by the molecular association-dissociation processes between particles depending on protein molecules in mixtures. We assume that side-by-side association of BSA-PAA complex particles took place at γ ? 5. At γ > 5, dissociation of the aggregates occurred by the including certain protein molecules into composition and by the compactization of polycomplex particles.  相似文献   

5.
Xiu-juan Yang  Cui Liu  Ou-lian Li 《Talanta》2010,82(5):1935-1942
A new electromagnetic induction detector for capillary electrophoresis and its application are described. The detector is consisted of an inductor, a resistor, a high-frequency signal generator and a high-frequency millivoltmeter. The conditions affecting the response of the detector, including dimension of the magnetic ring, position of the capillary, number of coil turns, frequency, excitation voltage and value of the resistor were examined and optimized. The feasibility of the proposed detector was evaluated by detection of inorganic ions and separation of amino aids. Its quantification applicability was investigated by determination of aspirin and paracetamol in pharmaceutical preparation (Akafen powder). The primary factors affecting separation efficiency, which include variety of buffer, buffer concentration, injection time and injection height and separation voltage, were researched. Experimental results demonstrated that this new detector showed a well-defined correlation between sample concentrations and responses (r = 0.997-0.999), with detection limits of 30 μmol L−1 for aspirin and 10 μmol L−1 for paracetamol, as well as good reproducibility and stability. Compared with currently available detection techniques, this new detector has several advantages, such as simple construction, no complicated elements, ease of assembly and operation, and potential for universal applications. It can be an alternative to the traditional methods in the quality control of the pharmaceutical preparations.  相似文献   

6.
In this work, a capillary electrophoresis (CE) procedure was developed for the simultaneous determination of a pharmaceutical drug and its counter-ion, namely labetalol hydrochloride. For this purpose, an uncoated fused-silica capillary, a low conductivity background electrolyte (BGE) and a capacitively coupled contactless conductivity detector (C4D) were employed. This detection system is highly sensitive and enables detection of inorganic as well as organic ions unlike with direct UV detection. Moreover, to be able to simultaneously analyze the cationic drug (labetalol+) and its anionic counter-ion (Cl) in the same electrophoretic run without the need of a coated capillary, a dual-opposite end injection was performed. In this technique, the sample is hydrodynamically injected into both ends of the capillary. This method is simple and easy to perform since the different injection steps are automated by the CE software.This novel CE-C4D procedure with dual-opposite end injection has been successfully validated and applied for the analysis of chloride content in an adrenergic antagonist (labetalol hydrochloride). Thus, the hereby developed method has been shown to enable fast (analysis time < 10 min), precise (repeatability of migration times < 0.7% and of corrected-peak areas < 3.3%; n = 6) and rugged analyses for the simultaneous determination of a pharmaceutical drug and its counter-ion.  相似文献   

7.
For the first time, results of precision measurements of the viscosity coefficient of the binary vapor mixture methanol-triethylamine at low densities are reported. The relative measurements with an all-quartz oscillating-disk viscometer were carried out for nearly equimolar mixtures along five isochores at densities from 0.010 to 0.033 mol dm−3 as well as for a mixture of the mole fraction ymeth = 0.3322 at a density 0.016 mol dm−3 in the temperature range between 298 and 498 K. The uncertainty is estimated to be ±0.2% at ambient temperature, increasing to ±0.3% at higher temperatures. Isothermal values of a mixture with the averaged mole fraction ymeth = 0.5002 were recalculated from the original experimental data and evaluated with a first-order expansion for the viscosity, in terms of density. A so-called individual correlation on the basis of the extended theorem of corresponding states was employed to describe the interaction viscosity in the limit of zero density. Some data points at low temperatures had to be excluded from this calculation, since the measurements were performed in the saturated vapor phase. For these data points the vapor-liquid equilibrium had to be evaluated to assign the correct mole fraction in the vapor to the measured viscosity.  相似文献   

8.
Miller KE  Skogerboe KJ  Synovec RE 《Talanta》1999,50(5):1045-1056
First, a novel technique for calibration of a dynamic surface tension detector (DSTD) is described. The DSTD measures the differential pressure as a function of time across the liquid-air interface of growing drops that repeatedly form and detach at the end of a capillary tip. The calibration technique utilizes the ratio of pressure signals acquired from the drop growth of two separate solutions, i.e. a standard solution and a corresponding mobile phase, such as water, both of which have a known surface tension. Once calibrated, the dynamic surface tension of an analyte is obtained from the ratio of the pressure signals from the analyte solution to that of the mobile phase solution. Thus, this calibration technique eliminates the need to optically image the radius of the expanding drop of liquid. Accurate dynamic surface tension determinations were achieved for aqueous sodium dodecyl sulfate (SDS) solutions over a concentration range of 0.5-5.4 mM. The measured surface tensions for these SDS solutions range from 70.3 to 46.8 dyne/cm and were in excellent agreement with the literature. A precision of 0.2 dyne/cm (1 S.D.) was routinely obtained. Second, the DSTD with this calibration technique was combined with flow injection analysis (FIA) for the study of model protein solutions and polymer solutions. The kinetic surface tension behavior of aqueous bovine serum albumin (BSA) solutions as a function of concentration and flow rate is presented. Evaluation of the dynamic surface tension data illustrates that a protein such as BSA initially exhibits kinetically-hindered surface tension lowering, i.e. a time dependence, as BSA interacts with the liquid-air interface of an expanding drop. FIA/DSTD is then shown to be an effective tool for the rapid study of kinetically-hindered surfactant mixtures. It was found that mixtures of SDS and the polymeric surfactant Brij(R)-35 (lauryl polyoxyethylene ether with an average molecular weight of 1200 g/mol) result in essentially an additive lowering of the surface tension. Mixtures of polyethylene glycol (PEG), with an average molecular weight of 1470 g/mol, and Brij(R)-35, however, result in a competitive (non-additive) surface tension with the Brij(R)-35 dominating the response.  相似文献   

9.
We determine the association constants for ligand–protein complex formation using the flow injection method. We carry out the measurements at high flow rates (F = 1 mL min−1) of a carrier phase. Therefore, determination of the association constant takes only a few minutes. Injection of 1 nM of the ligand (10 μL of 1 μM concentration of the ligand solution) is sufficient for a single measurement. This method is tested and verified for a number of complexes of selected drugs (cefaclor, etodolac, sulindac) with albumin (BSA). We obtain K = 4.45 × 103 M−1 for cefaclor, K = 1.00 × 105 M−1 for etodolac and K = 1.03 × 105 M−1 for sulindac in agreement with the literature data. We also determine the association constants of 20 newly synthesized 3β- and 3α-aminotropane derivatives with potential antipsychotic activity – ligands of 5-HT1A, 5-HT2A and D2 receptors with the albumin. Results of the studies reported here indicate that potential antipsychotic drugs bind weakly to the transporter protein (BSA) with ≈ 102–103 M−1. Our method allows measuring K in a wide range of values (102–109 M−1). This range depends only on the solubility of the ligand and sensitivity of the detector.  相似文献   

10.
The binding interaction of Alpinetin (APT) with bovine serum albumin (BSA) was studied by fluorescence, UV-visible and synchronous fluorescence spectroscopy (SFS) under simulated physiological conditions. The measured complex spectra were resolved by multivariate curve resolution-alternating least squares (MCR-ALS), yielding a host of data and information, which otherwise would have been impossible to obtain. The extracted profiles corresponded to the spectra of the single species in the APT/BSA mixture. In addition, the presence of the APT-BSA complex was demonstrated, and it was shown that the associated quenching of the fluorescence from the BSA protein resulted from the formation of APT-BSA complex via a static mechanism. The binding constant (Ka(ave) = 2.34 × 106 L mol−1) and the number of sites (n = 1) were obtained by fluorescence methods as were the thermodynamic parameters (ΔH0, ΔS0 and ΔG0). This work suggested that the principal binding between APT to BSA was facilitated by hydrophobic interactions. The thermodynamic parameters for APT were compared to those from the structurally similar Chrysin and Wogonin molecules. It appeared that the entropy parameters were relatively more affected by the small structural changes. SFS from the interaction of BSA and APT showed that the ligand affected the conformation of BSA. The competitive interaction of APT and site makers with BSA indicated site I as the binding area of APT in BSA.  相似文献   

11.
Xiao-tong Chen 《Talanta》2010,80(5):1952-4801
A novel fluorescence turn-on detection method of human serum albumin (HSA) and bovine serum albumin (BSA) in aqueous solution is investigated using 2,4-dihydroxyl-3-iodo salicylaldehyde azine (DISA). Upon the addition of DISA to HSA/BSA solution, a fluorescence turn-on effect at 529 nm can be observed with a large stokes shift of ∼129 nm based on hydrophobic binding-mode between protein and dye. Under the optimal condition, the linear ranges of fluorescence intensity for HSA and BSA are 0.1-30 μg mL−1 with the relative correlation coefficient of R2 = 0.991 (n = 10) and 0.3-50 μg mL−1 with R2 = 0.997 (n = 10); and the detection limits for HSA and BSA based on IUPAC (CDL = 3Sb/m) are 20 ng mL−1 and 50 ng mL−1, respectively.  相似文献   

12.
The interaction between colloidal AgTiO2 nanoparticles and bovine serum albumin (BSA) was studied by using absorption, steady state, time resolved and synchronous fluorescence spectroscopy measurements. Absorption spectroscopy proved the formation of a ground state BSA?AgTiO2 complex. Upon excitation of BSA, colloidal AgTiO2 nanoparticles effectively quenched the intrinsic fluorescence of BSA. The number of binding sites (n = 1.06) and apparent binding constant (K = 3.71 × 105 M−1) were calculated by the fluorescence quenching method. A static mechanism and conformational changes of BSA were observed.  相似文献   

13.
A drop-based dynamic surface-tension detector (DSTD) has been used to study the dynamic surface tension behavior of proteins denatured in guanidine thiocyanate (GndSCN). The dynamic surface tension at the air–liquid interface is obtained by measuring the internal pressure of drops that grow and detach at a specified rate. In the method the sample of interest is injected and subsequently flows to the DSTD-sensing capillary tip. For this work, a novel DSTD calibration procedure utilizing two distinct mobile phases is applied. Here, the mobile phases are aqueous with different constituents, for example GndSCN and phosphate buffer, either added or omitted. The dual-mobile phase calibration procedure gives the analyst the capability of making protein measurements in a GndSCN–phosphate buffer mobile phase, while measuring a calibration standard in another mobile phase, such as water, in which the surface tension of the calibration standard is readily available. Results are presented with drop volumes of either 2 L (i.e. 2-s drops) or 7 L (i.e. 7-s drops) for proteins varying in molar mass from 12,000 to 330,000 g mol–1. We demonstrate that the DSTD can be used to determine the molar mass of proteins denatured in GndSCN. The method applies a regime where the denatured protein is detected by surface-active properties, and selectivity with regard to molar mass is contained in the dynamic component of the DSTD signal. The dynamic surface pressure signals of the denatured proteins suggest that diffusion plays a large role in the kinetics of the surface activity. The limit of detection for the denatured proteins studied ranged from 3 mg L–1 to 14 mg L–1. The DSTD, coupled with the novel dual-mobile phase calibration procedure, can be used to investigate the fundamental properties of proteins. Insight into the behavior at the air–liquid interface for native and denatured proteins is achieved; this is a novel tool for studying protein denaturation, complementary to other common approaches such as spectroscopy and calorimetry. Furthermore, the reported method could be widely applied to the study of effects on the interfacial properties of proteins after a variety of chemical and physical modifications that are possible with the dual-mobile phase calibration procedure.  相似文献   

14.
The first version of nano-injection device for capillary gas chromatography (cGC) based on inkjet microchip was developed. The nano-injector could accurately control the injection volume in nano-liter, even pico-liter range. Its configuration and mechanism were discussed in detail. Adopting photolithography and plasma etching technology, we firstly fabricated the inkjet microchip and stuck to a piezoelectric device to eject droplets. Then, a special feedback tube was added to make it function as a nano-injector for cGC, which was an important design to compensate pressure difference between the evaporation chamber of cGC and the sample extrusion chamber of inkjet microchip. The injected volume can be precisely controlled by the number of injected droplets. Excellent precision (RSDs were below 10.0%, n = 5) was observed for the injection of ethanol at elevated pressure. Minimum injection volume was about 1.25 nL at present. Additionally, good repeatability of the calibration curves for the hydrocarbons ethanolic solution (the RSDs of all components were below 5.30%, n = 5) confirmed its feasibility in quantitative analysis regardless of concentration. These results suggested that it can be an accurate nano-injector for cGC.  相似文献   

15.
Yang WP  Zhang ZJ  Hun X 《Talanta》2004,62(4):661-666
A novel capillary microliter order droplet injection-chemiluminescence (CL) system is proposed. In this system, the liquid sample microdrops, automatically formed at the end of a capillary tip by the effect of the gravity and the gas pressure, repeatedly drop into the miniature reaction cell and reacts with CL reagent to generate CL signal. The phenomena of sample zone dilution and spreading are eliminated as the capillary is used as the sample channel and gas pressure is used as driving force without the liquid carrier stream. Therefore, a high sensitivity is obtained. To evaluate the applicability of the proposed method, a determination of benzoyl peroxide (BP) is examined. The system shows that the benzoyl peroxide is detected linearly in the concentration range from 5×10−10 to 1×10−6 g ml−1. The detection limit (signal-to-noise ratio=3) is 1.4×10−10 g ml−1 for benzoyl peroxide (mass concentration is 1.1 pg, i.e., 4.5 fmol), which is the best result reported so far. The relative standard deviation (n=11) is 1.5% for 2.0×10−8 g ml−1 BP. The proposed detector for the detection of benzoyl peroxide offers the advantages of sensitivity, simplicity, rapidity, automation and miniaturization. The proposed method has been applied satisfactorily to the determination of benzoyl peroxide in wheat flour.  相似文献   

16.
As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n = 3), 1.6057% (n = 3) and 1.6132% (n = 3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV–vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES–protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins.  相似文献   

17.
In the present paper, we have developed a capillary liquid chromatography with MS detection for the determination at ng g−1 levels of four heterocyclic aromatic amines (MeIQx, norharman, harman and harmine), a group of mutagenic and carcinogenic compounds that can potentially be produced in protein-rich food during processing operations. They have been determined in commercial ready-to-eat (RTE) smoked salmon and soft cheese treated with E-beam irradiation. On the basis of experimental design studies and operating conditions of MS detector, best chromatographic conditions were obtained using a Luna® C18 capillary column (150 mm × 0.3 mm I.D.) with a mixture of acetonitrile–ammonium formate 5 mM pH 3.6 buffer (13:87, v/v) as mobile phase. To improve sensitivity, large injection volumes (20 μL) and injection solutions of low elution strength were employed. Sample preparation procedure included a previous treatment with 1 M NaOH, followed by two solid-phase extraction steps; firstly on diatomaceous earth and then on mixed-mode cartridges. Heterocyclic amines were detected neither in irradiated and in non-irradiated samples, indicating that they were not formed by the radiation effect even at doses higher than those indicated in the Food Safety Objective established by regulatory agencies. RTE food samples were spiked at concentration levels in the range 10–30 ng g−1. Recoveries higher than 85% (n = 3 for each spiked level) were obtained, showing the effectiveness of the proposed methodology.  相似文献   

18.
Sun M  Du WB  Fang Q 《Talanta》2006,70(2):392-396
In this work, a miniaturized liquid-liquid extraction system under stopped-flow manipulation mode with spectrometric detection was developed. A Teflon AF liquid-core waveguide (LCW) capillary was used to serve as both extraction channel for organic solvent flow and adsorption detection flow cell. Gravity induced hydrostatic pressure was used to drive the organic and aqueous phases through the extraction channels. During extraction process, a stable organic and aqueous phase interface was formed at the outlet of the capillary, through which the analyte in the flowing aqueous stream was extracted into the stationary organic solvent in capillary. The absorbance of the analyte extracted into the organic solvent was measured in situ by a spectrometric detection system with light emitting diode (LED) as light source and photodiode as absorbance detector. The performance of the system was demonstrated in the determination of sodium dodecyl sulfate (SDS) extracted as an ion pair with methylene blue into chloroform. The precision of the measured absorbance for a 5 mg L−1 SDS standard was 6.1% R.S.D. (n = 5). A linear response range of 1-10 mg L−1 SDS was obtained with 5 min extraction period. The limit of detection (LOD) for SDS based on three times standard deviation of the blank response was 0.25 mg L−1.  相似文献   

19.
Aiqin Gong  Yanyan Hu  Suhai Yu 《Talanta》2007,73(4):668-673
A new spectrofluorimetric method to determine epristeride (EP) has been developed, which based on the EP has a strong ability to quench the intrinsic fluorescence of bovine serum albumin (BSA). There was the relationship between the fluorescence quenching intensity of BSA (ΔF = FBSA − FBSA-EP) and the concentration EP. The quenching mechanism was investigated with the quenching type, the association constants, the number of binding sites and basic thermodynamic parameters. The method had been successfully applied to the analysis of EP in real samples and the obtained results were in good agreement with the results of official method-HPLC.  相似文献   

20.
Densities and dynamic viscosities for methanol or ethanol with water, ethyl acetate, and methyl acetate at several temperatures T = (293.15, 298.15, and 303.15) K have been measured over the whole composition range and 0.1 MPa, along with the properties of the pure components. Excess molar volumes, viscosity deviations, and excess free energy of activation for the binary systems at the above-mentioned temperatures, were calculated and fitted to the Redlich-Kister equation to determine the fitting parameters and the root-mean-square deviations. UNIQUAC equation was used to correlate the experimental viscosity data. The UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号