首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth of a room-temperature sputter-deposited thin Au film on two soft polymeric substrates, polystyrene (PS) and poly(methyl methacrylate) (PMMA), from nucleation to formation of a continuous film is investigated by means of atomic force microscopy. In particular, we studied the surface morphology evolution of the film as a function of the deposition time observing an initial Au three-dimensional island-type growth. Then the Au film morphology evolves, with increasing deposition time, from hemispherical islands to partially coalesced worm-like island structures, to percolation, and finally to a continuous and rough film. The overall Au morphology evolution is discussed in the framework of the interrupted coalescence model, allowing us to evaluate the island critical radius for the partial coalescence R c=8.7±0.9 nm for Au on PS and R c=7.6±0.8 nm for Au on PMMA. Furthermore, the application of the kinetic freezing model allows us to evaluate the room-temperature surface diffusion coefficient D s≈1.8×10−18 m2/s for Au on PS and D s≈1.1×10−18 m2/s for Au on PMMA. The application of the Vincent model allows us, also, to evaluate the critical coverage (at which the percolation occurs) P c=61% for Au on PS and P c=56% for Au on PMMA. Finally, the dynamic scaling theory of a growing interface was applied to characterize the kinetic roughening of the Au film on both PMMA and PS. Such analyses allow us to evaluate the dynamic scaling, growth, and roughness exponents z=3.8±0.4, β=0.28±0.03, α=1.06±0.05 for the growth of Au on PS and z=4.3±0.3, β=0.23±0.03, α=1.03±0.05 for the growth of Au on PMMA, in agreement with a non-equilibrium but conservative and linear growth process in which the surface diffusion phenomenon plays a key role.  相似文献   

2.
In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive (Bacillus megaterium and Staphylococcus aureus), and three Gram negative (Escherichia coli, Proteus vulgaris and Shigella sonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.  相似文献   

3.
Spark generated carbon and iridium nanoparticles were characterised by their electrical-mobility diameter D and by the mass of particulate matter collected in parallel on filter. The particles exhibited slightly skewed lognormal size distributions with mean mobility diameters between 18 and 74 nm. The masses calculated from the measured distributions under the assumption that the particles were spherical (diameter D) and of bulk mass density turned out to be much higher than the gravimetric mass, by factors between 8 and as high as 340. This very pronounced difference initiated a search for an improved relation between particle size and mass. Data analysis suggested that the mass increases linearly with increasing D. Hence the measured distributions were evaluated under the assumption that the spark generated matter was composed of spherical primary nanoparticles of mean diameter d, aggregated in the form of chains of joint length βD, with β>1. Using reasonable values of β between 2 and 4, the mean diameter of carbon primary particles turned out to be 10±1.8 nm, in excellent agreement with size data recently obtained by transmission electron microscopy (TEM). The primary iridium particles were found to be distinctly smaller, with diameters between 3.5±0.6 nm and 5.4±0.9 nm. The comparatively small uncertainty is due to the fact that the primary-particle diameter is proportional to the square root of β. The calculated volume specific surface areas range between 500 and 1700 m2/cm3. These numbers are close to the ‘active’ surface areas previously measured by the BET method. The good agreement with TEM and BET data suggests that the novel approach of nanoparticle characterisation is meaningful. Accordingly, the number concentrations of all individual primary particles rather than the concentrations measured by the mobility analyser should be␣considered the correct dose metric in studies on animal exposure to spark generated nanoparticles. The␣evaluated data imply that the numbers quoted in the literature must be enlarged by factors ranging between about 10 and a maximum as high as 80. An erratum to this article can be found at  相似文献   

4.
The kinetics of the growth of gold nanoparticles during the reduction of tetrachloroauric acid by hydrazine in dispersed aqueous solution encapsulated by reverse micelles of Triton N-42 surfactant (with decane as dispersion medium) was studied by means of spectrophotometry. According to DLS data, at a set value of solubilization capacity V s/V o = 0.005 initial micelles have an aqueous core hydrodynamic diameter d c = 3.6±0.2 nm. The final particles obtained after full reduction of AuIII have a metallic core of defect-free single-crystalline gold with a narrow size distribution and average core diameter d Au = 7.7 ± 1.4 nm as shown by TEM. The rate of the particle growth is limited by the rate of gold reduction. The process kinetics corresponds to the model consisting of two stages of reduction AuIII → AuI → Au0. The stages involve the formation and redox decay of the intermediate complexes Au(N2H4)Cl3 and Au(N2H4)Cl, and each stage proceeds via two routes: (1) homogeneous in the dispersed aqueous phase, and (2) heterogeneous on the particle surfaces. Reactions taking route (2) are autocatalytic because they proceed with participation of the surface atoms of particles as the final products of AuIII reduction. The dependencies of observed rate constants on reagent concentrations, temperature, and solubilization capacity of the micellar solution are studied.  相似文献   

5.
The aim of this work was to verify applicability of electron paramagnetic resonance (EPR) ex vivo dosimetry in teeth enamel for determination of doses absorbed by patients during radiotherapy with radiation fields covering head regions and to examine with what accuracy the doses predicted by radiotherapy treatment plan (RTP) can be confirmed by doses measured ex post by the EPR method. The doses were determined in 22 enamel samples obtained from 11 patients who, after their radiotherapy treatment underwent extraction of teeth due to medical reasons. The delivered doses were determined by measuring EPR signals in enamel samples from the extracted teeth; magnitude of these signals is proportional to concentration of stable free radicals induced by radiation in the hydroxyapatite content of enamel. The measured doses were compared with doses planned in the teeth locations by RTP systems. The relation between the measured (Dm) and the planned (Dp) doses can be described as a linear function: Dm = s·Dp + b, with the slope s = 0.93 ± 0.03 and the intercept b = 0.67 ± 1.26. The deviations between the measured and calculated doses were in the (−12.6%, +1.9%) range with the average deviation of – 4.6%. It is concluded, than more accurate measurements, achievable when using a higher calibration dose than in the present study, are necessary to confirm or to deny the observed bias between the measured and planned doses.  相似文献   

6.
The theoretical optimization of the design parametersN A ,N D andW P has been done for efficient operation of Au-p-n Si solar cell including thermionic field emission, dependence of lifetime and mobility on impurity concentrations, dependence of absorption coefficient on wavelength, variation of barrier height and hence the optimum thickness ofp region with illumination. The optimized design parametersN D =5×1020 m−3,N A =3×1024 m−3 andW P =11.8 nm yield efficiencyη=17.1% (AM0) andη=19.6% (AM1). These are reduced to 14.9% and 17.1% respectively if the metal layer series resistance and transmittance with ZnS antireflection coating are included. A practical value ofW P =97.0 nm gives an efficiency of 12.2% (AM1).  相似文献   

7.
PurposeWe aimed to investigate whether quantitative diffusivity variables of healthy ovaries vary during the menstrual cycle and to evaluate alterations in women using oral contraceptives (OC).MethodsThis prospective study (S-339/2016) included 30 healthy female volunteers, with (n = 15) and without (n = 15) intake of OC between 07/2017 and 09/2019. Participants underwent 3T diffusion-weighted MRI (b-values 0–2000 s/mm2) three times during a menstrual cycle (T1 = day 1–5; T2 = day 7–12; T3 = day 19–24). Both ovaries were manually three-dimensionally segmented on b = 1500 s/mm2; apparent diffusion coefficient (ADC) calculation and kurtosis fitting (Dapp, Kapp) were performed. Differences in ADC, Dapp and Kapp between time points and groups were compared using repeated measures ANOVA and t-test after Shapiro-Wilk and Brown-Forsythe test for normality and equal variance.ResultsIn women with a natural menstrual cycle, ADC and kurtosis variables showed significant changes in ovaries with the dominant follicle between T1 vs T2 and T1 vs T3, whilst no differences were observed between T2 vs T3: ADC ± SD for T1 1.524 ± 0.160, T2 1.737 ± 0.160, and T3 1.747 ± 0.241 μm2/ms (p = 0.01 T2 vs T1; p = 1.0 T2 vs T3, p = 0.003 T3 vs T1); Dapp ± SD for T1 2.018 ± 0.140, T2 2.272 ± 0.189, and T3 2.230 ± 0.256 μm2/ms (p = 0.003 T2 vs T1, p = 1.0 T2 vs T3, p = 0.02 T3 vs T1); Kapp ± SD for T1 0.614 ± 0.0339, T2 0.546 ± 0.0637, and T3 0.529 ± 0.0567 (p < 0.001 T2 vs T1, p = 0.86 T2 vs T3, p < 0.001 T3 vs T1). No significant differences were found in the contralateral ovaries or in females taking OC.ConclusionPhysiological cycle-dependent changes in quantitative diffusivity variables of ovaries should be considered especially when interpreting radiomics analyses in reproductive women.  相似文献   

8.
Using the soft-pion theorem and the assumption on the final-state interactions, we include the contribution of the DK continuum into the QCD sum rules for the DsJ(2317) meson. We find that this contribution can significantly lower the mass and the decay constant of the Ds(0+) state. For the value of the current quark mass mc(mc) = 1.286 GeV, we obtain the mass of Ds(0+) M=2.33 ± 0.02 GeV in the interval s0 = 7.5–8.0 GeV2, being in agreement with the experimental data, and the vector current decay constant of Ds(0+) f0=0.128 ± 0.013 GeV, much lower than those obtained in the previous literature. PACS  12.39.Hg; 13.25.Hw; 13.25.Ft; 12.38.Lg  相似文献   

9.
Polycrystalline (Fe/Pd)n multilayers are grown onto sapphire substrates at room temperature in a UHV system. The number of periods n=40 and the thickness of Pd layers of tPd=4 nm are kept constant, whereas the thickness of the Fe layers is varied from 1.5 to 5 nm. Structural properties are studied by in situ reflection high energy diffraction (RHEED), scanning tunnelling microscopy (STM) and ex situ by X-ray diffraction at small angles and large angles. Analyzing the experimental data using the program SUPREX we obtain interplanar distances of dFe=2.03±0.01 Å for an Fe layer thickness larger than about 2.5 nm as expected for (1 1 0) planes of BCC Fe. For Fe layers with thicknesses less than about 2.5 nm the interplanar distance is dFe=2.1±0.01 Å, which is close to the distance between (1 1 1) planes of FCC Fe with a lattice parameter of a=3.64 Å. Magnetic susceptibility measurements at temperatures between 1.5 and 300 K for (Fe/Pd)n multilayers with FCC Fe yield a magnetic moment per Fe atom of μ=2.7±0.1 μB, which is about 20% larger compared to μ=2.2 μB for BCC Fe. We show that the occurrence of the large magnetic moment originates from FCC Fe being in the high spin (HS) state rather than from polarization effects of Pd at Fe/Pd interfaces.  相似文献   

10.
Previous studies in our laboratory have reported that the chemical etch rate of a commercial photosensitive glass ceramic (FoturanTM, Schott Corp., Germany) in dilute hydrofluoric acid is strongly dependent on the incident laser irradiance during patterning at λ=266 nm and λ=355 nm. To help elucidate the underlying chemical and physical processes associated with the laser-induced variations in the chemical etch rate, several complimentary techniques were employed at various stages of the UV laser exposure and thermal treatment. X-ray diffraction (XRD) was used to identify the crystalline phases that are formed in Foturan following laser irradiation and annealing, and monitor the crystalline content as a function of laser irradiance at λ=266 nm and λ=355 nm. The XRD results indicate the nucleation of lithium metasilicate (Li2SiO3) crystals as the exclusive phase following laser irradiation and thermal treatment at temperatures not exceeding 605 °C. The XRD studies also show that the Li2SiO3 density increases with increasing laser irradiance and saturates at high laser irradiance. For our thermal treatment protocol, the average Li2SiO3 crystal diameters are 117.0±10.0 nm and 91.2±5.8 nm for λ=266 nm and λ=355 nm, respectively. Transmission electron microscopy (TEM) was utilized to examine the microscopic structural features of the lithium metasilicate crystals. The TEM results reveal that the growth of lithium metasilicate crystals proceeds dendritically, and produces Li2SiO3 crystals that are ∼700–1000 nm in length for saturation exposures. Optical transmission spectroscopy (OTS) was used to study the growth of metallic silver clusters that act as nucleation sites for the Li2SiO3 crystalline phase. The OTS results show that the (Ag0)x cluster concentration has a dependence on incident laser irradiance that is similar to the etch rate ratios and Li2SiO3 concentration. A comparison between the XRD and optical transmission results and our prior etch rate results show that the etch rate contrast and absolute etch rates are dictated by the Li2SiO3 concentration, which is in turn governed by the (Ag0)x cluster concentration. These results characterize the relationship between the laser exposure and chemical etch rate for Foturan, and permit a more detailed understanding of the photophysical processes that occur in the general class of photostructurable glass ceramic materials. Consequently, these results may also influence the laser processing of other photoactive materials. PACS  42.62.-b; 61.43.Fs; 81.05.Kf; 81.10.-h; 83.80.Ab  相似文献   

11.
Pressure effects on magnetic properties of two La0.7Ca0.3MnO3 nanoparticle samples with different mean particle sizes were investigated. Both the samples were prepared by the glycine-nitrate method: sample S—as-prepared (10 nm), and sample S900—subsequently annealed at 900 °C for 2 h (50 nm). Magnetization measurements revealed remarkable differences in magnetic properties with the applied pressure up to 0.75 GPa: (i) for S sample, both transition temperatures, para-to-ferromagnetic T C = 120 K and spin-glass-like transition T f = 102 K, decrease with the pressure with the respective pressure coefficients dT C/dP = −2.9 K/GPa and dT f/dP = −4.4 K/GPa; (ii) for S900 sample, para-to-ferromagnetic transition temperature T C = 261 K increases with pressure with the pressure coefficient dT C/dP = 14.8 K/GPa. At the same time, saturation magnetization M S recorded at 10 K decreases/increases with pressure for S/S900 sample, respectively. Explanation of these unusual pressure effects on the magnetism of sample S is proposed within the scenario of the combined contributions of two types of disorders present in the system: surface disorder introduced by the particle shell, and structural disorder of the particle core caused by the prominent Jahn–Teller distortion. Both disorders tend to vanish with the annealing of the system (i.e., with the nanoparticle growth), and so the behavior of the sample S900 is similar to that previously observed for the bulk counterpart.  相似文献   

12.
Films of nominal composition Ge28Se60Sb12 were deposited on microscope slides by pulsed laser deposition (PLD), using either bulk or powdered glassy targets and a Nd:YAG laser (λ=266 nm). The films with thickness comprised between 400 and 800 nm showed a smooth and dense morphology. They were homogeneous in composition all over the samples with a composition somewhat deficient in selenium compared to the nominal one: Ge28.1±0.3Se56.1±0.1Sb15.8±0.2 and Ge29.0±0.3Se55.5±0.1Sb15.5±0.2 for films obtained from powdered glassy targets and bulk targets, respectively. The optical characteristics of the films were extracted from the transmission spectra recorded between 250 and 2500 nm. In particular, the refractive index at 1.5 μm was found to be 2.75±0.03, close to that of the bulk glass, as expected for dense films. The decrease in the optical band gap and the increase in the Urbach absorption edge with the film thickness were attributed to an increase in disorder.  相似文献   

13.
A wavelength division multiplexer (WDM) for 980/1550 nm based on planar curved waveguide coupler (CWC) is proposed. Compared with conventional parallel straight waveguide coupler (SWC), this structure has more flexibility with two variable parameters of bending radius R and minimum edge-to-edge spacing d0, which are the two main parameters for the splitting ratio of coupler and decrease the complexity of device design and fabrication. Based on coupled mode theory (CMT) and waveguide theory, R and d0 of the WDM CWC are designed to be R=13.28 m and d0=4.39 μm. The contrast ratio (CR) and insertion loss (IL) for 980 and 1550 nm are CR1=24.62 dB, CR2=24.56 dB and IL1=0.014 dB, IL2=0.015 dB, respectively. The 3D beam propagation method (BPM) is used to verify the validity of the design result. The influence of R and d0 variations on the device performance is analyzed. For CR>20 dB, the variation ranges of R and d0 should be within −0.10 to +0.44 m and −0.05 to +0.02 μm, respectively.  相似文献   

14.
SmAlO3 nanocrystalline powders were successfully synthesized by the polymeric precursor method using ethylenediaminetetraacetic acid as a chelating agent. The precursor and the derived powders were characterized by thermogravimetry analysis (TG) and differential scanning calorimetry analysis (DSC), infrared spectroscopy (IR), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The results showed that pure SmAlO3 powder with orthorhombic perovskite structure could be synthesized at 800°C for 2 h without formation of any intermediate phase. The average particle size of the powder synthesized at 900°C was as low as 28 nm. Subsequently, the bulk SmAlO3 ceramics were prepared at various sintering temperatures using the synthesized powders calcined at 900°C for 2 h as starting materials. The sintering experiments indicated that the sample sintered at 1550°C for 2 h exhibited the highest relative density of 97.2% and possessed the best microwave dielectric properties of ε r=20.94, Q×f=78600 GHz and τ f=−71.8 ppm/°C.  相似文献   

15.
The synthesis and functionalization of carbon nanoparticles with PEG200 and mercaptosuccinic acid, rendering fluorescent carbon dots, is described. Fluorescent carbon dots (maximum excitation and emission at 320 and 430 nm, respectively) with average dimension 267 nm were obtained. The lifetime decay of the functionalized carbon dots is complex and a three component decay time model originated a good fit with the following lifetimes: τ 1 = 2.71 ns; τ 2 = 7.36 ns; τ 3 = 0.38 ns. The fluorescence intensity of the carbon dots is affected by the solvent, pH (apparent pK a of 7.4 ± 0.2) and iodide (Stern-Volmer constant of 78 ± 2 M−1).  相似文献   

16.
By the method of helium thermal desorption from submicrocrystalline palladium presaturated in the gaseous phase, the diffusion coefficient D eff and solubility coefficient C eff of helium are measured in the range P=0–3 MPa and T=293–508 K. The pressure dependence of C eff flattens at high pressures. At low saturation pressures, the temperature dependences of the diffusion and solubility coefficients may be divided into (1) high-temperature (400–508 K) and (2) low-temperature (293–400 K) ranges described by the exponentials D 1, 2=D 0exp (−E 1, 2 D /kT) and C 1, 2=C 0exp (−E 1, 2 S /kT). The energies of diffusion activation are E 2 D =0.0036±0.0015 eV and E 1 D =0.33±0.03 eV, and the solution energies are E 2 S =−0.025±0.008 eV and E 1 S =0.086±0.008 eV in the low-and high-temperature ranges, respectively. Mechanisms behind the diffusion and solution of helium are discussed.  相似文献   

17.
We report an efficient process for preparing monodisperse SiO2@Y0.95Eu0.05VO4 core–shell phosphors using a simple citrate sol–gel method and without the use of surface-coupling silane agents or large stabilizers. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the resulting SiO2@Y0.95Eu0.05VO4 core–shell phosphors. The XRD results demonstrate that the Y0.95Eu0.05VO4 particles crystallization on the surface of SiO2 annealing at 800 °C is perfectly and the crystallinity increases with raising the annealing temperature. The obtained core–shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 500 nm and an average thickness of ~50 nm), are not agglomerated, and have a smooth surface. The thickness of the YVO4:Eu3+ shells on the SiO2 cores could be easily tailored by changing the mass ratio of shell to core (W = [YVO4]/[SiO2]) (~50 nm for W = 30%). The Eu3+ shows a strong PL luminescence (dominated by 5D0 − 7F2 red emission at 618 nm) under the excitation of 320 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the values of W.  相似文献   

18.
A silver resistant Bacillus sp. was isolated through exposure of an aqueous AgNO3 solution to the atmosphere. Silver nanoparticles were synthesized using these airborne bacteria (Bacillus sp.). Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analyses confirmed that silver nanoparticles of 5–15 nm in size were deposited in the periplasmic space of the bacterial cells; a preferable cell surface location for the easy recovery of biogenic nanoparticles.  相似文献   

19.
Silver-dispersed mesoporous silica was in situ synthesized in aerosol phase. The solidification of silica was catalyzed in the presence of the silver, which increased the order and d values of the mesophase at given reactor temperature. Silver nanoparticles grew confined in the pores when the atomic % of silver to Si was below 10 and the pore wall turned to be impermeable above 400 °C. Silver permeated through the pore wall below 400 °C to grow freely in the carrier gas. The mesophase deteriorated using spray pyrolysis above 800 °C due to the further densification of silica, or above 10 at.% of silver due to the excessive growth within the phase. The highest dispersion of silver ~4 nm in diameter with the highest order of the mesoporosity was obtained at 600 °C with 5 at.% silver. Calcination following the spray pyrolysis further densified the silica phase to freeze the growth of silver particles as well as lower the d value of the mesophase.  相似文献   

20.
《Current Applied Physics》2009,9(5):1129-1133
Measurements of In2S3 and ZnIn2S4 sprayed thin films thermal characteristics have been carried out using the photodetection technique. The thermal conductivity k and diffusivity D were obtained using a new protocol based on photothermal signal parameters analysis. Measured values of k and D were respectively, (15.2 ± 0.85) W m−1K−1 and (69.8 ± 7.1) × 10−6 m2s−1 for In2S3, (7.2 ± 0.7) W m−1K−1 and (32.7 ± 4.3) × 10−6 m2s−1 for ZnIn2S4. These values are extremely important since similar compounds are more and more proposed as Cd-free alternative materials for solar cells buffer layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号