首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The participation of electrolyte cations in the adsorption of bovine serum albumin (BSA) onto polymer latices was investigated. The latices used were hydrophobic polystyrene (PS), and hydrophilic copolymers, i.e., styrene (St)/2-hydroxyethyl methacrylate(HEMA) copolymer [P(St/HEMA)] and styrene/acrylamide (AAm) copolymer [P(St/AAm)]. Three kinds of electrolyte cations (Na+, Ca2+, Mg2+) were used as the chloride. The amount of BSA adsorbed in every cation medium showed a maximum near the isoelectric point (iep, pH about 5) of the protein. The amounts of BSA adsorbed onto copolymer latices (except in the acidic pH region lower than the iep) were considerably smaller than that onto PS latex because of the steric repulsion and the decrease in the hydrophobic interaction between BSA and copolymer latices. In the acidic pH region, there was little difference in the amount of BSA adsorbed in every cation medium. However, in the pH region higher than the iep, the amounts of BSA adsorbed (particularly onto PS latex) in divalent cations (Ca2+ and Mg2+) media were relatively greater compared with that in a monovalent (Na+) one. This result was interpreted on the basis of the differences in such effects of electrolyte cations as dehydration power, suppression of the electrostatic repulsion, and binding affinity to BSA molecule. Ion Chromatographic estimation of the amounts of electrolyte cations captured upon BSA adsorption (in pH > 5) revealed that divalent cations were incorporated into the contact interface between the latex and BSA molecule so as to prevent the accumulation of anion charge and facilitate the protein adsorption.  相似文献   

2.
The electroporetic mobility of hexadecane particles in water and in very dilute CTAB solutions was measured. The technique of microelectrophoresis was applied. Zeta potential was calculated according to the Hückel formula, applying Henry's correction factors. Electrokinetic charge density was calculated according to the formula used by Delgado et al., and previously discovered empiricaly by Loeb et al. and derived mathematicaly by Ohshima et al. It was found that the particle concentration in emulsion limits their charge in solutions of very low ion concentration (10–7:10–6 M), because the greater the particle concentration, the smaller the extent of the ions adsorbed at the surface of one particle. The zeta potential was found to be independent of particle concentration if the ratio of the number of bulk ions to particle number is not lower than 1.6×106. This ratio depends on particle size, and the value 1.6×106 relates to particles of diameter 1.6 m.  相似文献   

3.
Precipitation of perfluorocarboxylic acids (n-C3H7OOH, n-C7H15COOH, and n-C9F19COOH) in aqueous solutions of different metal nitrates (K+, Ag+, Ca2+, Ba2+, Zn2+, Al3+, La3+) was studied by solubility and calorimetric measurements. The free energy of precipitation per single surfactant chain was found to depend on the chain length but not on the charge of the reacting cation. It was shown that the precipitation of perfluorocarboxylates of multivalent cations was governed by positive entropy change and a low enthalpic contribution, whereas the soaps of monovalent cations exhibited the opposite behavior. The entropy of precipitation was not affected by the chain length of the surfactants in the presence of monovalent cations, but it increased for cations of higher charge.Supported by the NSF Grant CHE-8619509.This paper is dedicated to Professor Armin Weiss on the occasion of his 60th birthday. One of the authors (E. M.) particularly appreciates many years of cooperation with Professor Weiss in editing Colloid and Polymer Science, as well as in many other scientific interactions.  相似文献   

4.
An emulsion polymerization of styrene in the presence of an amphoteric emulsifier of the betaine type; N,N-dimethyl-n-laurylbetaine (LNB), has been studied at various pH values. The relationships between the physicochemical properties of LNB aqueous solutions, the emulsion polymerization process and the characteristics of the synthesized latex particles were studied under various pH conditions. The polymerization rate and the particle number concentration decreased with increasing pH of LNB aqueous solution and changed in shape at both ca. pH 4 and pH 8–10. The properties of LNB aqueous solution also changed with the pH and changed in shape at the same pH as that of the emulsion polymerization. These pH values were in good agreement with the pH at which the LNB molecule changed its ionic form. The number of synthesized latex particles was proportional to the number of LNB micelles in the solution, below pH 10. The particle size of the synthesized latex particles and the molecular weight of the latex polymers also changed with the properties of LNB aqueous solutions, accompanying the change of the ionic form of LNB molecules.  相似文献   

5.
The characterization of the electrical surface properties of Aquacoat, a polymer latex of great interest in pharmaceutical sciences, is described. The technique used is electrophoresis. Analysis was carried out of the effect of pH, electrolyte and surfactant concentration on the electrophoretic mobility of the latex particles. Increasing the pH of the dispersion medium provokes a monotonous increase in the value of the negative mobility. The electrolytes LiCl, KCl and NaCl give rise to larger mobilities when their concentration in solution is increased up to ca. 10–3 M, and a similar behavior is found in the presence of Na2SO4. The effect of raising the concentration of CaCl2 is to decrease the absolute value of the mobility as a consequence of double layer compression. Sodium dodecyl sulphate seems to adsorb on the particle surface increasing its negative charge, but when its concentration is close to 10–3 M saturation of the surface appears to take place, and an approximately constant mobility is suggested by data, whatever the pH of the medium. Finally, the mobility variations with LaCl3 concentration indicate adsorption of the La3+ cation when it is hydrolyzed (pH5), whereas non-hydrolyzed lanthanum has little effect on the particle charge.  相似文献   

6.
Free radical polymerization of acrylamide was carried out in nonionic microemulsions of water, an isoparaffinic oil, Isopar M and a blend of nonionic emulsifiers: a sorbitan sesquioleate and a polyoxyethylene sorbitol hexaoleate (HLB of the mixture: 9.3). The size and the stability of the latex particles formed after polymerization were studied as a function of monomer, emulsifier and electrolyte concentration. High emulsifier and high monomer contents favor obtaining high molecular weight polyacrylamides. It is shown that both the number of polymer chains contained in each latex particle and the size of the particles are essentially controlled by the acrylamide/emulsifier weight ratio.  相似文献   

7.
-potentials of a silica suspension and three types of polystyrene latex suspensions with different surface charge groups were measured, as a function of the particle concentration () in the suspension over a wide range, using the colloid vibration potential (CVP) technique. The concentration dependence of the-potential in silica suspension is explained well by Levine et al.s [1] cell model theory, verifying the applicability of the cell model to the CVP in silica suspension. However, the-potential of latex suspensions ordinarily decreases as the particle concentration increases, even after being corrected by the term of (1-). This tendency is especially noticeable in the systems that have particles with high surface charge densities. Furthermore, the conductivity measurements of these suspensions reveal that the conductivity of these systems, especially in their highly charged state, increases as the particle concentration is increased; opposite in tendency to silica suspensions. These new findings can be explained as follows: on the highly charged surface of a latex particle, a polyelectrolyte-like (hairy) layer is present, which overlaps at some point. This permits interparticle surface conduction and results in the abnormal behavior of CVP in these systems.  相似文献   

8.
In the case of cationic polystyrene latex, the adsorption of anionic surfactants involves a strong electrostatic interaction between both the particle and the surfactant, which may affect the conformation of the surfactant molecules adsorbed onto the latex-particle surface. The adsorption isotherms showed that adsorption takes place according to two different mechanisms. First, the initial adsorption of the anionic surfactant molecules on cationic polystyrene surface would be due to the attractive electrostatic interaction between both ionic groups, laying the alkyl-chains of surfactant molecules flat on the surface as a consequence of the hydrophobic interaction between these chains and the polystyrene particle surface, which is predominantly hydrophobic. Second, at higher surface coverage the adsorbed surfactant molecules may move into a partly vertical orientation with some head groups facing the solution. According to this second mechanism the hydrophobic interactions of hydrocarbon chains play an important role in the adsorption of surfactant molecules at high surface coverage. This would account for the very high negative mobilities obtained at surfactant concentration higher than 5×10–7 M. Under high surface-coverage conditions, some electrophoretic mobility measurements were performed at different ionic strength. The appearance of a maximum in the mobility-ionic strength curves seems to depend upon alkyl-chain length. Also the effects of temperature and pH on mobilities of anionic surfactant-cationic latex particles have been studied. The mobility of the particles covered by alkyl-sulphonate surfactants varied with the pH in a similar manner as it does with negatively charged sulphated latex particles, which indicates that the surfactant now controls the surface charge and the hydrophobic-hydrophilic character of the surface.Dedicated to the memory of Dr. Safwan Al-Khouri IbrahimPresented at the Euchem Workshop on Adsorption of Surfactants and Macromolecules from Solution, Åbo (Turku), Finland, June 1989  相似文献   

9.
The effect of defects in a dipalmitoylphosphatidylcholine (DPPC) membrane on Ca2+ permeability across the membrane was studied. Addition of teleocidin to a suspension of DPPC vesicles encapsulating Quin 2 increased the fluorescence intensity of Quin 2. Change of fluorescence intensity was significant below the phase-transition temperature of the membrane, and increased according to the kind of divalent metal ions in the medium in the order of Mg2+2+2+. It was confirmed that DPPC vesicles did not change the vesicular structure upon binding teleocidin to the membrane. Therefore, the fluorescence increase below the phase-transition temperature was ascribed to the influx of divalent cations into DPPC vesicles through cracks formed in the membrane upon distribution of teleocidin. By contrast, 12-0-tetradecanoylphorbol-13-acetate (TPA) did not change the fluorescence intensity of Quin 2 significantly. It should be noted that teleocidin, which located at the membrane surface, yielded more significant defects across the lipid membrane than TPA, which was incorporated into the hydrophobic core of the membrane.  相似文献   

10.
The effects of particle size on polyacrylamide (PAAm,M w =59×104, 500×104) adsorption were investigated using a series of well-characterized hematite (-Fe2O3) dispersions. The -Fe2O3 particles with highly monodisperse and nearly spherical shape ranged in radius from 23 nm to 300 nm. the maximum amount of PAAm adsorption (M m ) in each system, showed a steady increase with decreasing particle radius and was influenced strongly by particle concentrations in the medium. Furthermore, it was realized that the diameter of -Fe2O3 particles after treatment with PAAm under different particle concentrations decreased with increasing particle concentration. The relation between particle concentration in the medium and particle size after treatment was also influenced by the medium pH, i.e., at the medium pH close to the isoelectric point of -Fe2O3 particles (pHo=9.2), the particle size after treatment increased with increasing particle concentration. All these results suggest that in the system of ultra-fine particles, the mixing process between particle-particle and polymerparticle will play an important role on the conformation of adsorbed polymer layer.  相似文献   

11.
The number average and the weight average particle diameters for suspended inorganic colloids found by the new technique of steric field-flow fractionation may be successfully used provided that the most suitable carrier solution is selected, in order to minimize the coagulation and adhesion phenomena.In the present work polydisperse, irregular colloidal particles of FePO4·2H2O (strengite) were studied. The average particle diameters were found to vary with the electrolyte concentration in the suspending medium. A strong variation of the number and weight average particle diameters was also observed with the quantity of the surfactant added to aquatic medium in order to increase colloidal stability. The influence of the electrokinetic charge of the FePO4·2H2O particles in relation to the surface charge of the material of the column employed, on the particle size measured was investigated. The proper carrier solution for minimizing coagulation and adhesion phenomena in the FePO4·2H2O colloidal particles was found to contain either 1.5% (v/v) detergent FL-70 and 0.1 MKNO3 or 0.5% (v/v) detergent FL-70 and 0.033 MNa2SO4.  相似文献   

12.
Aqueous latex was flocculated by mixtures of poly(diallyldimethyl ammonium chloride), PDADMAC, and anionic surfactants. Sodium dodecyl sulfate, (SDS), and Aerosol OT influenced flocculation whereas nonionic Tergitol NP-10 did not. The flocculation domains were correlated with properties of the polymer-surfactant complexFlocculation was never observed above the CMC of the corresponding surfactant solution without polymer or latex. At SDS concentrations greater than 10–3.6 M the flocculation boundary corresponded to the first appearance of insoluble polymer-surfactant complex which was characterized by dynamic light scattering and microelectrophoresis. Under these conditions latex (diameter 570 nm) and dispersed polymer-surfactant complex particles (diameters between 30 and 2 000 nm) displayed simultaneous homo and heteroflocculation. The boundaries of the flocculation domains at low surfactant concentration were determined by the ratio of polymer to latex and by the net electrostatic charge of the soluble polymer-surfactant complex. On the other hand, the mechanisms controlling flocculation boundaries in the dispersed polymer-surfactant domain require further clarification.  相似文献   

13.
A colloid of RuO2, prepared by thermal decomposition of RuCl3, was characterized with respect to its colloid-chemical properties and assessed as a catalyst for photochemical production of hydrogen. The RuO2 proved to be unstable towards coagulation, even under conditions of low electrolyte concentration and in the presence of polymers. The sol manifested the same electric double layer characteristics as many other oxide dispersions. The point of zero charge (p.z.c.) in indifferent electrolyte was positioned at pH 5.75.Adsorption of methylviologen (MV2+), a commonly used electron relay in photochemical systems, at the RuO2/solution interface is mainly a result of attractive coulombic interactions (above the p.z.c. of RuO2). No indications have been found that it adsorbs on RuO2 under the operational conditions of hydrogen production. In the hydrogen production system, the mass transfer of methylviologen radicals (MV+) is a rate-limiting factor. As a function of the methylviologen concentration, the catalytic production of hydrogen passes through a maximum.Dedicated to Professor Dr. Dr. h. c. Armin Weiss on the occasion of his 60th birthday.  相似文献   

14.
The structure factor of a number of silica suspensions in cyclohexane, with concentrations ranging from 0.01 to 0.714 gcm–3, has been determined with small angle x-ray scattering, using a Kratky camera. The experimental structure factor is compared with a theoretical one for which polydispersity effects on the particle scattering factor and on the structure are explicitly taken into account.Analysis of the scattered intensity at a scattering angle=0 shows that the particles in the suspension interact like hard spheres, with a specific hard sphere volume of 0.61 cm3g–1. A comparison of the experimentally determined structure factor with the structure factor found by a model calculation for a polydisperse system, using the experimental particle size distribution, showed a general agreement. The height of the first maximum agreed well for all concentrations, however its position varied stronger with concentration in the experimental curves. A possible explanation of this effect is given.  相似文献   

15.
Uniform spherical silver particles were produced by decomposing the bis(1,2-ethanediamine)silver(I) complex, by aging a solution of 1.0×10–3 mole dm–3 in silver (I) nitrate, 1.0 mole dm–3 in 1,2-ethanediamine, and 2.5×10–1 mole dm–3 in nitric acid (basic solution) at 100°C for 42 min. The average modal diameter was estimated to be 0.52 m with a relative standard deviation of 0.10. A moderately oxygenrich layer, 40 Å thick, on the surface of the particles was detected by means of photoelectron surface microanalysis (XPS). The silver particles grew through a polynuclear-layer mechanism, as judged from the concentration change in soluble silver(I) species in the supernatant solution. The particles' point of zero charge (PZC) was estimated at pH 6.5 by potentiometric titration.  相似文献   

16.
Preparation of composite fine particles by heterocoagulation   总被引:4,自引:0,他引:4  
To prepare regular composite particles comprised of organic and inorganic compounds, based on heterocoagulation theory, the properties of the mixture of small amphoteric latices (2a=250 nm) and large spherical silica (2a=240–1590 nm) were investigated as a function of pH, particle number ratio, particle size ratio and electrolyte concentration in the medium. It is apparent that under suitable conditions, we may prepare a stable mixed suspension comprising uniform composite particles, which are made up of many latices regularly adsorbed on silica surfaces, and each composite particle is undergoing Brownian motion as an isolated unit. This new composite particle is very stable for electrolyte, base and acid medium, and its surface charges (sign and magnitude) can be controlled by changing the pH of the medium.  相似文献   

17.
The dielectric behavior (, ) of three well-cleaned monodisperse polystyrene latexes having the same particle size and the same number of chemically-bound surface groups has been studied at a fixed microwave frequency (9.4 GHz), as a function of temperature and surface group (SO 4 , COO, OH).A large dielectric relaxation was observed in the sulfate-stabilized latex, which has the most polar surface end-group. The anomalous behavior in the thermal dependence of the hydroxyl and carboxyl-stabilized latexes (the OH latex being more pronounced than the COO latex) may originate from differences in the experimental conditions used for the preparation of such polymer colloids, or due to the presence of ionic species.On the basis of various dielectric models, the apparent volume fractions of the latexes were calculated. The amount of bound water around the latex particle was quantitatively correlated to the polarity of surface end-group (SO 4 > COO > OH). The differences between the calculated and actual values were not only a reflection of the thickness of vicinal water, but could also be indicative of the presence of oligomeric species in the suspension's medium (serum) of the latex. The permittivities of hydrated particle and of bound water were obtained with a non-linear iterative procedure.  相似文献   

18.
Isotachophoresis and viscometric measurements were performed on aqueous dispersions of non-stoichiometric polyelectrolyte complexes in order to elucidate the surface charge situation of the complex particles in dependence on component charge density, ratio of cationic to anionic groups in the complex, and pH and ionic strengths of the ambient medium. Components for complex formation were acryl-based anionic and cationic polyelectrolytes of the pendent type. From our results, an amphoteric character of the polyelectrolyte complex particles can be concluded, with an isoelectric point characterized by zero mobility and a minimum in reduced viscosity spec/c of the particle dispersion, and with the sign of net surface charge depending on ambient pH and component charge density. The influence of ionic strength on the spec/c vs pH plots can be interpreted by assuming a competition between salting-out and electrostatic shielding effects. No correlation could be established between the overall molar ratio of cationic to anionic groups and the isoelectric point of the complex particles, which obviously indicates a different composition of surface and bulk of the polyelectrolyte complex particles.  相似文献   

19.
In the suspension polymerization of VCM, insoluble polymer particles are formed inside the monomer droplets. The growth and aggregation of these particles are responsible for important polymer properties, such as porosity. It is well established that the most characteristic polymer particles, the primary particles, are of a narrow distribution with a size (diameter) ranging from 0.10–0.20 m. This work studied the formation of primary particles based on the aggregation phenomena that take place inside a monomer droplet. This was done by formulating a population balance equation, which was based on the following considerations: a) polymerization occurs in both the monomer and the polymer phases; b) there is continuous formation of the basic particles in the monomer phase; c) the growth of the polymer particles occurs as a result of both polymerization in the polymer phase and aggregation of the particles; d) the colloidal properties of the particles that are responsible for the aggregation phenomena were considered to be the net result of attraction and repulsion energies.It was shown that for particles carrying a constant charge it was not possible to predict the formation of primary particles of size 0.10–0.20 m. The particle size distribution had a mode diameter equal to the diameter of the basic particles. Consequently, the particle charge was allowed to vary in a way proportional to the particle radius raised to a power coefficient. For values of the coefficient greater than zero, i. e., when the particle charge increased during polymerization, the aggregation of the basic particles was efficient enough to result in the formation of large primary particles.  相似文献   

20.
The aim of this research was to prepare a monodisperse polystyrene latex without surfactants adsorbed at the particle surface. Conventional polymerization formulations usually lead to large amounts of oligomers. Furthermore, they are characterized by a low reproducibility with respect to particle size. This was overcome by using a seed latex that was crosslinked in order to overcome dissolution in the monomer phase. By adjusting the seed concentration, any desired particle size in the range 0.5–1.2 m could be obtained. The monodispersity was very good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号