首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
COP-Cl catalyzes the rearrangement of (E)-allylic trichloroacetimidates to provide transposed allylic trichloroacetamides of high enantiopurity, a transformation that underlies the first truly practical method for transforming prochiral allylic alcohols to enantioenriched allylic amines and congeners. The high functional group compatibility of this asymmetric rearrangement and the demonstrated broad utility in synthesis of the allylic trichloroacetimidate to allylic trichloroacetamide conversion are singular features of this new catalytic asymmetric reaction.  相似文献   

2.
Readily prepared allylic zinc halides undergo SN2‐type substitutions with allylic bromides in a 1:1 mixture of THF and DMPU providing 1,5‐dienes regioselectively. The allylic zinc species reacts at the most branched end (γ‐position) of the allylic system furnishing exclusively γ,α′‐allyl–allyl cross‐coupling products. Remarkably, the double bond stereochemistry of the allylic halide is maintained during the cross‐coupling process. Also several functional groups (ester, nitrile) are tolerated. This cross‐coupling of allylic zinc reagents can be extended to propargylic and benzylic halides. DFT calculations show the importance of lithium chloride in this substitution.  相似文献   

3.
Roberts JP  Lee C 《Organic letters》2005,7(13):2679-2682
[reaction: see text] An efficient allylic etherification of aliphatic alcohols with allylic carbonates has been achieved by an iridium catalysis using stoichiometric zinc alkoxides or a two-component bimetallic catalytic system where the Ir(I) catalyst acts on allylic carbonates to generate electrophiles while aliphatic alcohols are separately activated by Zn(II) coordination to function as nucleophilies. This reaction occurs with complete regiospecificity and tolerates a wide range of functional groups.  相似文献   

4.
We have devised a highly regio- and enantioselective iridium-catalyzed allylic amination reaction with the sulfur-stabilized aza-ylide, S,S-diphenylsulfilimine. This process provides a robust and scalable method for the construction of aryl-, alkyl- and alkenyl-substituted C-chiral allylic sulfilimines, which are important functional groups for organic synthesis. Additionally, the combination of the allylic amination with an in situ deprotection of the sulfilimine constitutes a convenient one-pot protocol for the construction of chiral nonracemic primary allylic amines.  相似文献   

5.
A serendipitously discovered palladium‐catalyzed asymmetric allylic alkylation reaction with diorganozinc reagents, which displays broad functional group compatibility, is reported. This novel transformation hinges on a remarkable ligand effect which overrides the standard “umpolung” reactivity of allyl–palladium intermediates in the presence of dialkylzincs. Owing to its mild conditions, enantioselective allylic alkylations of racemic allylic electrophiles are possible in the presence of sensitive functional groups.  相似文献   

6.
The construction of all C(sp3) quaternary centers has been successfully achieved under Ni‐catalyzed cross‐electrophile coupling of allylic carbonates with unactivated tertiary alkyl halides. For allylic carbonates bearing C1 or C3 substituents, the reaction affords excellent regioselectivity through the addition of alkyl groups to the unsubstituted allylic carbon terminus. The allylic alkylation method also exhibits excellent functional‐group compatibility, and delivers the products with high E selectivity.  相似文献   

7.
The first Pd-catalyzed enantioselective [2,3]-rearrangement of allylic amine N-oxides is described, which formally represents an asymmetric Meisenheimer rearrangement. The mild reaction conditions enable the synthesis of chiral nonracemic aliphatic allylic alcohol derivatives with reactive functional groups. On the basis of preliminary studies, a cyclization-mediated mechanism is proposed.  相似文献   

8.
The formation of either deoxygenation products or allylic alcohols from epoxides is observed when these substrates are treated with Cp2TiCl under anhydrous conditions. It seems that processes via trisubstituted radicals give allylic alcohols whereas processes via disubstituted radicals may give deoxygenation products or allylic alcohols depending on the structure of the original epoxide. This method allows a controlled access to these functional groups, providing a useful tool in organic synthesis. A mechanistic discussion for these transformations is reported.  相似文献   

9.
Photoredox-catalyzed isomerization of γ-carbonyl-substituted allylic alcohols to their corresponding carbonyl compounds was achieved for the first time by C−H bond activation. This catalytic redox-neutral process resulted in the synthesis of 1,4-dicarbonyl compounds. Notably, allylic alcohols bearing tetrasubstituted olefins can also be transformed into their corresponding carbonyl compounds. Density functional theory calculations show that the carbonyl group at the γ-position of allylic alcohols are beneficial to the formation of their corresponding allylic alcohol radicals with high vertical electron affinity, which contributes to the completion of the photoredox catalytic cycle.  相似文献   

10.
[3,3]-Sigmatropic rearrangements have been widely utilized for the synthesis of structurally complex organic molecules because of the ease with which carbon-carbon bonds are formed in a regio- and stereocontrolled manner. However, there are far fewer [3,3]-rearrangements available for the selective formation of carbon-nitrogen bonds despite the enormous potential of such reactions for the preparation of stereodefined allylic amines. We describe here the scope and mechanism of a [3,3]-rearrangement of allylic phosphorimidates that provides access to stereodefined allylic amines of diverse structure. The reactive intermediate in the reaction, an allylic phosphorimidate, is produced in situ through the combination of readily available starting materials (allylic alcohols, chlorophosphites, and organic azides), rendering the reaction an efficient three-component process. Analogous to other [3,3]-rearrangements, the stereochemistry in an allylic alcohol starting material is transferred with fidelity to the allylic amine product and, further, allylic amines are produced as single olefin isomers. In addition, a crossover experiment indicates that the rearrangement is an intramolecular process. Finally, activation of the allylic moiety either through incorporation of electron-deficient functional groups or through the use of a transition-metal catalyst significantly facilitates the reaction and consequently the preparation of a wider range of substitution patterns.  相似文献   

11.
Photoredox‐catalyzed isomerization of γ‐carbonyl‐substituted allylic alcohols to their corresponding carbonyl compounds was achieved for the first time by C?H bond activation. This catalytic redox‐neutral process resulted in the synthesis of 1,4‐dicarbonyl compounds. Notably, allylic alcohols bearing tetrasubstituted olefins can also be transformed into their corresponding carbonyl compounds. Density functional theory calculations show that the carbonyl group at the γ‐position of allylic alcohols are beneficial to the formation of their corresponding allylic alcohol radicals with high vertical electron affinity, which contributes to the completion of the photoredox catalytic cycle.  相似文献   

12.
Copper-catalyzed allylic alkylation of ketene silyl acetals proceeded with excellent γ-E-selectivity. Efficient α-to-γ chirality transfer with anti-selectivity occurred in the reaction of enantioenriched secondary allylic phosphates, affording enantioenriched β-branched γ,δ-unsaturated esters. Excellent functional group compatibility was observed.  相似文献   

13.
A Pd(0)-catalyzed three-component reaction of methyl propargyl carbonate with phenols and nucleophiles is described. The reaction proceeded smoothly and various allylic compounds were synthesized selectively in good to excellent yields under neutral conditions. The regioselective introduction of functional groups into the allylic compounds could also be achieved. The reaction with nitrogen and carbon nucleophiles afforded mainly 2-aryloxyallylic compounds. On the other hand, aliphatic alcohols gave 2-alkoxyallylic compounds.  相似文献   

14.
This account presents the synthesis and application of propargylic and allylic fluorides containing hydroxy or carbonyl functional groups. In particular, the Barbier-type reaction of difluoropropargyl bromides with aldehydes or chloroformates provides versatile propargylic fluorides, and the organocatalytic fluorination of dienamine intermediates has been demonstrated as an effective method to obtain allylic fluorides stereoselectively. Additionally, mechanistic insights into such reactions are discussed with the aid of density functional theory calculations. The report also describes the preparation of fluorinated 1,7-diyne or 1,7-enyne derivatives of these compounds. These propargylic and allylic fluorides can be used as building blocks for fluorinated heterocycles, such as fluorinated furans, tetrahydrofurans, and lactams. Additionally, fluorinated bi- or tri-heterocyclic compounds can be synthesized via transition-metal-catalyzed reactions with fluorinated 1,7-diyne or 1,7-enyne derivatives.  相似文献   

15.
Copper-catalyzed stereoconvergent allylation of chiral sp3-hybridized carbon nucleophiles with a racemic mixture of acyclic secondary allylic phosphates is reported. In the presence of a copper-catalyst complexed with chiral BenzP* ligand, tandem coupling reaction of vinyl arenes, bis(pinacolato)diboron, and racemic allylic phosphates provided β-chiral alkylboronates possessing (E)-alkenyl moiety through a direct stereoconvergent allylic coupling with concomitant generation of a C(sp3)-stereogenic center. A range of vinyl (hetero)arenes and secondary allylic phosphates bearing 1°, 2°, 3° alkyl and phenyl α-substituents were suitable for the reaction, forming products with high enantioselectivities up to 95 % ee. Density functional theory calculations were conducted in detail to elucidate the origin of the observed regioselectivity of borylcupration and stereoconvergent (E)-olefin formation from racemic allylic phosphates.  相似文献   

16.
An efficient and practical synthesis of α-phenylthio ketone through gold-catalyzed intermolecular oxidation of phenylacetylene and substituted aryl(benzyl) allylic sulfides was developed. The reaction scope is fairly good with substituted aryl(benzyl) allylic sulfides, tolerating various functional groups, and the reaction affords the yields of 63%—85%.  相似文献   

17.
Metal-catalyzed enantioselective allylation, which involves the substitution of allylic metal intermediates with a diverse range of different nucleophiles or S(N)2'-type allylic substitution, leads to the formation of C-H, -C, -O, -N, -S, and other bonds with very high levels of asymmetric induction. The reaction may tolerate a broad range of functional groups and has been applied successfully to the synthesis of many natural products and new chiral compounds.  相似文献   

18.
The first iridium‐catalyzed intermolecular asymmetric allylic amination reaction with 2‐hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N‐substituted 2‐pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2‐hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98 % yield and 99 % ee.  相似文献   

19.
Appropriately substituted allylic sulfides, sulfones, bromides, phosphonates, stannanes and peroxides, vinyl ethers and thionocarbonyl compounds are effective chain transfer agents in free radical polymerizations. These compounds function by a radical addition-fragmentation mechanism by which fragments derived from the chain transfer agents are installed at both ends of polymer chains. This provides a convenient method for preparing both mono- and di-end functional oligomers and polymers. Allylic peroxides fragment to give epoxy end groups while the other allylic compounds give rise to macromonomers by introducing terminal double bonds.  相似文献   

20.
The zirconium imido complex Cp2(THF)Zr=NSi(t-Bu)Me2 (1) reacts with allylic ethers, chlorides, and bromides to give exclusively the products of the SN2' reaction; i.e., attack at the allylic position remote from the leaving group with migration of the double bond. The primary amine products can be isolated in excellent yields, after in situ Cbz protection, in the presence of variety of functional groups. Good diastereoselectivity and complete stereoselectivity allowed the formation of enantioenriched allylic amines from enantioenriched allylic ethers. Regiospecific substitution with 1 has also been achieved with allylic fluorides, which are notoriously poor substrates in other substitution reactions. On the basis of rate and kinetic isotope effect studies, we propose a general mechanism for the allylic substitution reactions with 1 which involves dissociation of THF and binding of the substrate, followed by the substitution step. In a DFT study of the substitution reaction, we identified a six-membered closed transition state for the substitution step and other relevant stationary points along the reaction coordinate. This study shows that the substitution reaction can be described as a concerted asynchronous [3,3]-sigmatropic rearrangement. This detailed knowledge of the reaction mechanism provides a rationale for the origins of the observed regio-, diastereo-, and stereoselectivity and of the unusual reactivity profile observed in the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号