首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Methanobactin (Mb) from Methylosinus trichosporium OB3b is a member of a class of metal binding peptides identified in methanotrophic bacteria. Mb will selectively bind and reduce Cu(II) to Cu(I), and is thought to mediate the acquisition of the copper cofactor for the enzyme methane monooxygenase. These copper chelating properties of Mb make it potentially useful as a chelating agent for treatment of diseases where copper plays a role including Wilson’s disease, cancers, and neurodegenerative diseases. Utilizing traveling wave ion mobility-mass spectrometry (TWIMS), the competition for the Mb copper binding site from Ag(I), Pb(II), Co(II), Fe(II), Mn(II), Ni(II), and Zn(II) has been determined by a series of metal ion titrations, pH titrations, and metal ion displacement titrations. The TWIMS analyses allowed for the explicit identification and quantification of all the individual Mb species present during the titrations and measured their collision cross-sections and collision-induced dissociation patterns. The results showed Ag(I) and Ni(II) could irreversibly bind to Mb and not be effectively displaced by Cu(I), whereas Ag(I) could also partially displace Cu(I) from the Mb complex. At pH ≈ 6.5, the Mb binding selectivity follows the order Ag(I)≈Cu(I)>Ni(II)≈Zn(II)>Co(II)>>Mn(II)≈Pb(II)>Fe(II), and at pH 7.5 to 10.4 the order is Ag(I)>Cu(I)>Ni(II)>Co(II)>Zn(II)>Mn(II)≈Pb(II)>Fe(II). Breakdown curves of the disulfide reduced Cu(I) and Ag(I) complexes showed a correlation existed between their relative stability and their compact folded structure indicated by their CCS. Fluorescence spectroscopy, which allowed the determination of the binding constant, compared well with the TWIMS analyses, with the exception of the Ni(II) complex.
Graphical abstract ?
  相似文献   

2.
The authors report on a disposable sensor for the differential pulse anodic stripping voltammetric (DPASV) determination of the ions Zn(II), Pb(II) and Cu(II). Simultaneous detection is accomplished by using a screen-printed carbon electrode (SPCE) co-modified with an in-situ plated bismuth (Bi)) film and gold nanoparticles (AuNPs). The synergistic effect of the Bi film, and the large surface and good electrical conductivity of the AuNPs strongly assist in the co-deposition of the three ions. Four well-defined and fully separated anodic stripping peaks, at 540 mV for Zn(II), 50 mV for Pb(II), 140 mV for Bi(III) and 295 mV for Cu(II), all vs. Ag/AgCl, can be seen. The modified SPCE was characterized by scanning electron microscopy, X-ray diffraction, cyclic voltammetry and electrochemical impedance spectroscopy. Under the optimized conditions, the sensor has a good response to these ions. The detection limits (at an S/N ratio of 3) are 50 ng·L?1 for Zn(II), 20 ng·L?1 for Pb(II), and 30 ng·L?1 for Cu(II). The method was applied to the determination of the 3 ions in spiked lake water samples.
Graphical abstract Schematic of screen-printed carbon electrode (SPCE) co-modified with a bismuth film and gold nanoparticles for electrochemical simultaneous determination of Zn(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetric (DPASV).
  相似文献   

3.
In the present study, structures and electronic properties of inclusion complexes of TMeQ[6] with PZ+ and CHCl3 were investigated, using the density functional theory calculations and molecular dynamic (MD) simulations. Theoretical results at the M05-2X-D3/6-31G(d) level clearly confirm that the inclusion complex formation is energetically feasible, and PZ+@TMeQ[6] formation is more favorable than CHCl3@TMeQ[6]. Natural bond orbital and quantum theory of atoms in molecules analyses were applied to investigate the electron transfer and topological properties of the interactions of TMeQ[6] and guest compounds. Non-covalence nature, van der Waals, of the host–guest interactions was confirmed by non-covalent interactions–reduced density gradient method. Finally, the effect of solvent was taken into account by using the MD simulations. According to H-bond analysis in the MD simulations, the importance of hydrogen bonding interactions was confirmed only in PZ+@TMeQ[6] complex, the studied inclusion complexes are more stable in chloroform, because of a high value of van der Waals interactions. This study show that TMeQ[6] as a good candidate for sensing.

Graphical Abstract

A joint MD/QM study confirms the side chain effect of PZ+ on the response ability improvement of TMeQ[6].
  相似文献   

4.
Novel transition metal complexes with the repaglinide ligand [2-ethoxy-4-[N-[1-(2piperidinophenyl)-3-methyl-1-1butyl] aminocarbonylmethyl]benzoic acid] (HL) are prepared from chloride salts of manganese(II), iron(III), copper(II), and zinc(II) ions in water-alcoholic media. The mononuclear and non-electrolyte [M(L)2(H2O)2]?nH2O (M = Mn2+, n = 2, M = Cu2+, n = 5 and M = Zn2+, n = 1) and [M(L)2(H2O)(OH)]?H2O (M = Fe3+) complexes are obtained with the metal:ligand ratio of 1:2 and the L-deprotonated form of repaglinide. They are characterized using the elemental and molar conductance. The infrared, 1H and 13C NMR spectra show the coordination mode of the metal ions to the repaglinide ligand. Magnetic susceptibility measurements and electronic spectra confirm the octahedral geometry around the metal center. The experimental values of FT-IR, 1H, NMR, and electronic spectra are compared with theoretical data obtained by the density functional theory (DFT) using the B3LYP method with the LANL2DZ basis set. Analytical and spectral results suggest that the HL ligand is coordinated to the metal ions via two oxygen atoms of the ethoxy and carboxyl groups. The structural parameters of the optimized geometries of the ligand and the studied complexes are evaluated by theoretical calculations. The order of complexation energies for the obtained structures is as follows:
$$Fe(III) complex < Cu(II) complex < Zn(II) complex < Mn(II) complex.$$
The redox behavior of repaglinide and metal complexes are studied by cyclic voltammetry revealing irreversible redox processes. The presence of repaglinide in the complexes shifts the reduction potentials of the metal ions towards more negative values.
  相似文献   

5.
Systematic studies of silica gels with covalently immobilized thiosemicarbazide and formazan groups under the conditions of competitive sorption from multicomponent systems were conducted. A methodological approach to determine the selectivity of the modified sorption material with regard to Cu(II), Ni(II), Co(II), Cd(II), and Zn(II) was proposed. Solid-phase extraction in equilibrium conditions of Cu(II), Zn(II), Co(II), Cd(II), and Ni(II) on a silica gel with covalently immobilized thiosemicarbazide and formazan groups in the conditions of competitive sorption was studied. The possibility to use the pseudo-second-order kinetic equation for assessment of mutual influence at competitive sorption has been shown. We found that sorption from multicomponent solutions proceeds as a non-additive process under the conditions of an excess of functional groups.  相似文献   

6.
Carbon dots (CDs) modified with ethylene diamine (EDA) and the amino acids (AAs) Cys, His, Lys or Arg were synthesized, and their structures were confirmed by high resolution transmission electron microscopy, Raman spectrometry and X-ray photoelectron spectrometry. It is found that derivatization of the CDs with various AAs systemically modulates their electronic properties, and this results in a tunable selectivity in detection of metal cations via fluorescence quenching. The probes can be performed in aqueous solutions around pH 7. CDs can be excited under 345 nm excitation at room temperature and exhibit fluorescent peak at 450 nm. The decreasing fluorescence intensity is directly proportional to the concentration of metal cations. The limits of detection is 8.8 μg L?1 for Pb(II), 20 μg L?1 for Hg(II), 3.7 μg L?1 for Cu(II), 5.3 μg L?1 for Zn(II), 16 μg L?1 for Fe(III), and 7.2 μg L?1 for Cr(III), respectively. The different fluorescence response of the AA-modified CDs can be converted to logic gates and applied to photoelectronic nanoprobes by using microprocessors. In our perception, this assay has a large potential in terms of high-throughput screening for trace amounts of metal ions.
Graphical abstract Amino acid derivatized carbon dots with tunable selectivity were synthesized by a one pot method for fluorescent sensing of metal cations. The sensing events can be directly converted into different logic gates.
  相似文献   

7.
A simple method is described for the determination of copper(II) ions based on the cathodic electrochemiluminescence (ECL) of lucigenin which is quenched by Cu(II). The blue ECL is best induced at ?0.45 V (vs. Ag/AgCl) at a scan rate of 50 mV·s?1. Under optimum conditions, the calibration plot is linear in the 3.0 to 1000 nM Cu(II) concentration range. The limit of detection is 2.1 nM at a signal-to-noise ratio of 3. Compared to other analytical methods, the one presented here is simple, fast, selective and cost-effective. It has been successfully applied in the analysis of copper ions in spiked tap water samples with recoveries ranging from 93.0% (at 50 nM concentration) to 105.7% (at 150 nM).
Graphical abstract The inhibitory effect of Cu(II) on the cathodic electrochemiluminescence of lucigenin enables determination of Cu(II) with a 2.1 nM detection limit.
  相似文献   

8.
A zinc(II)-responsive ratiometric fluorescent core-shell nanoprobe (referred to as QPNPs) is described. It consist of an optimized combination of an internal reference dye (TBAP) encapsulated in the core, and a Zn(II)-specific indicator dye (PEIQ) in the shell. The nanoprobe was synthesized via single-step graft copolymerization induced by tert-butyl hydroperoxide at 80 °C. QPNPs exhibit a well-defined core-shell nanostructure and well-resolved dual emissions after photoexcitation at 380 nm. After exposure to Zn(II), the QPNPs display a green fluorescence peaking at ~500 nm that increases with the concentration of Zn(II), while the pink fluorescence of the porphine-derived reference dye peaking at ~650 nm remains unchanged. This results in color change from pink to green and thus enables Zn(II) to be detected both spectroscopically and with bare eyes. Zn(II) can be quantified with a 3.1 nM detection limit. The core-shell structured nanoprobe was also applied to real-time imaging of Zn(II) in living HeLa cells and in zebrafish. This work establishes a reliable approach to synthesize ratiometric fluorescent nanoprobes. It enables such nanoprobes to be prepared also by those not skilled in nanomaterial synthesis.
Graphical abstract A zinc(II)-responsive core-shell nanoprobe (referred to as QPNP) is synthesized via single-step graft copolymerization. Zn(II) can be quantitated with a 3.1 nM detection limit by the QPNPs through ratiometric fluorescence strategy (PEIQ as the Zn(II) indicator and TBAP as the reference dye).
  相似文献   

9.
The authors describe double-shell magnetic nanoparticles functionalized with 2-mercaptobenzothiazole (MBT) to give nanospheres of the type MBT-Fe3O4@SiO2@C). These are shown to be viable and acid-resistant adsorbents for magnetic separation of the heavy metal ions Ni(II), Cu(II) and Pb(II). MBT act as a binding reagent, and the carbon shell and the silica shell protect the magnetic core. Following 12 min incubation, the loaded nanospheres are magnetically separated, the ions are eluted with 2 M nitric acid and then determined by inductively coupled plasma-mass spectroscopy. The limits of detection of this method are 2, 82 and 103 ng L ̄1 for Ni(II), Cu(II), and Pb(II) ions, respectively, and the relative standard deviations (for n = 7) are 6, 7.8, and 7.4 %. The protocol is successfully applied to the quantitation of these ions in tap water and food samples (mint, cabbage, potato, peas). Recoveries from spiked water samples ranged from 97 to 100 %.
Graphical abstract Mercaptobenzothiazole-functionalized magnetic carbon nanospheres of type Fe3O4@SiO2@C were synthesized. Then applied for magnetic solid phase extraction of Ni(II), Cu(II) and Pb(II) from water and food samples with LOD of 0.002, 0.082 and 0.103 μg L?1 respectively.
  相似文献   

10.
Novel composites were obtained via direct assembly of polysulfides (Sx2?, X?=?3, 4, 6) on the surface of a metal organic framework (MOF; type benzene-1,3,5-tricarboxylic/Cu(II). They are referred to as Sx-MOFs and were used for highly selective and efficient extraction of ultra-trace amounts of heavy metal ions from aqueous solutions. The structure of the Sx-MOFs was characterized by Raman spectroscopy, FT-IR, X-ray diffraction, and scanning electron microscopy. The Raman spectra of Sx-MOF is similar to the bare MOF and shows the MOFs structure to be well retained after Sx functionalization. The selective interaction of Sx with soft metal ions and the high surface area of MOFs resulted in excellent affinity and selectivity for ions such as Hg(II). The Sx-MOFs of type S4-MOF had the highest distribution coefficient Kd value (~107) and best extraction recovery (~100%) for Hg(II). The S4-MOF also has high selectivity in the following order: Hg(II) >?>?Pb(II)?>?Zn(II)?>?Ni(II)?>?Co(II). The binding process of the metals occurs via M–S bonding. The ions were quantified by inductively coupled plasma optical emission spectrometry (ICP-OES). The detection limit for Hg(II) is 0.13 μg L?1. The S4-MOF was applied to the extraction of trace metal ions from natural and contaminated waters and data were compared with other sorbets. The results revealed that S4-MOF is an excellent adsorbent for sorption of heavy metal ions even in the presence of the relatively high concentration of other ions.
Graphical abstract A composite was synthesized via direct assembly of polysulfides (Sx2?, X?=?3, 4, 6) on surface of the metal organic framework (Sx-MOF) and was used for selective and efficient extraction of ultra-trace amounts of heavy metal ions from aqueous solutions.
  相似文献   

11.
A novel Schiff base, 3-(((1H-1,2,4-triazol-3-yl)imino)methyl)-4H-chromen-4-one (L) was synthesized and used as ligand for the synthesis of Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes. The structural characterization of the ligand and its metal complexes was determined by using various physicochemical and spectroscopic methods. The IR data show that the Schiff base ligand acts as a bidentate donor coordinating through the oxygen atom of the chromone and nitrogen atom of the imine group. Based on all spectral data, tetrahedral geometry has been proposed for all the metal complexes except Cu(II) and Pd(II) complexes. However, square-planar geometry has been proposed for Cu(II) and Pd(II) complexes. DNA binding interaction of the ligand and its metal complexes was investigated by using UV–visible absorption, fluorescence and molecular docking studies. The binding constants were in the order of 104 M?1 suggesting good binding affinity towards CT-DNA. The DNA cleavage activity of the synthesized compounds was investigated by using agarose gel electrophoresis. In vitro antimicrobial activity of the synthesized compounds were screened against two gram-positive bacteria (Bacillus subtilis, Staphylococcus aureu) and two gram-negative bacteria (Escherichia coli, Proteus vulgaris) and one fungi strain Candida albicans using disc diffusion method. Antioxidant activity was carried out by DPPH radical scavenging method. In vitro anti-proliferative activity of the ligand and its metal complexes was also carried on the HEK-293, HeLa, IMR-32 and MCF-7 cancer cell lines using MTT assay.  相似文献   

12.
Diphenyl diselenide was immobilized on chitosan loaded with magnetite (Fe3O4) nanoparticles to give an efficient and cost-effective nanosorbent for the preconcentration of Pb(II), Cd(II), Ni(II) and Cu(II) ions by using effervescent salt-assisted dispersive magnetic micro solid-phase extraction (EA-DM-μSPE). The metal ions were desorbed from the sorbent with 3M nitric acid and then quantified via microflame AAS. The main parameters affecting the extraction were optimized using a one-at-a-time method. Under optimum condition, the limits of detection, linear dynamic ranges, and relative standard deviations (for n?=?3) are as following: Pb(II): 2.0 ng·mL?1; 6.3–900 ng·mL?1; 1.5%. Cd(II): 0.15 ng·mL?1; 0.7–85 ng·mL?1, 3.2%; Ni(II): 1.6 ng·mL?1,.6.0–600. ng·mL?1, 4.1%; Cu(II): 1.2 ng·mL?1, 3.0–300 ng·mL?1, 2.2%. The nanosorbent can be reused at least 4 times.
Graphical abstract Fe3O4-chitosan composite was modified with diphenyl diselenide as a sorbent for separation of metal ions by effervescent salt-assisted dispersive magnetic micro solid-phase extraction.
  相似文献   

13.
Electron capture dissociation (ECD) and electron transfer dissociation (ETD) in metal-peptide complexes are dependent on the metal cation in the complex. The divalent transition metals Ni2+, Cu2+, and Zn2+ were used as charge carriers to produce metal-polyhistidine complexes in the absence of remote protons, since these metal cations strongly bind to neutral histidine residues in peptides. In the case of the ECD and ETD of Cu2+-polyhistidine complexes, the metal cation in the complex was reduced and the recombination energy was redistributed throughout the peptide to lead a zwitterionic peptide form having a protonated histidine residue and a deprotonated amide nitrogen. The zwitterion then underwent peptide bond cleavage, producing a and b fragment ions. In contrast, ECD and ETD induced different fragmentation processes in Zn2+-polyhistidine complexes. Although the N–Cα bond in the Zn2+-polyhistidine complex was cleaved by ETD, ECD of Zn2+-polyhistidine induced peptide bond cleavage accompanied with hydrogen atom release. The different fragmentation modes by ECD and ETD originated from the different electronic states of the charge-reduced complexes resulting from these processes. The details of the fragmentation processes were investigated by density functional theory.
Graphical Abstract ?
  相似文献   

14.
A magnetic nanosorbent was prepared from Fe3O4 nanoparticles and polyacrylamide using a solvothermal process. Two functions are achieved simultaneously in this process: The first consists in the formation of a carbon layer around the Fe3O4 nanoparticles, and the second one in the functionalization with an amido group. This combination allows the protection of Fe3O4 nanoparticles from dissolution in acid medium during heavy metal adsorption. The adsorbent was characterized by SEM, TEM, EDS, FTIR, TGA, and in terms of surface area. Results showed the Fe3O4 nanoparticles to be embedded in a sheet of carbon with folded surfaces which is functionalized with amido groups. The nanosorbent was applied to the enrichment of Cr(III), Co(II), Cd(II), Zn(II) and Pb(II) via magnetic solid phase extraction (mag-SPE). The effects of pH value, eluent type and sample volume were optimized. The validation of the procedure was verified by the analysis of a wheat gluten certified reference material (8418). The limits of detection for the above ions range from 1 to 110 ng L?1. The relative standard deviations are <10%. The procedure was successfully applied to the enrichment of Cr(III), Co(II), Cd(II), Zn(II) and Pb(II) from various water and food samples.
Graphical abstract Schematic of a new magnetic nanosorbent synthesized from Fe3O4 nanoparticles and polyacrylamide using a solvothermal method. The sorbent was used for the enrichment of Cr(III), Co(II), Cd(II), Zn(II) and Pb(II) in water and food samples for their ICP-MS detection.
  相似文献   

15.
The present paper reports on a chelation enhanced fluorescence (CHEF) effect that is observed on addition of certain metal ions to phosphorus doped carbon nanodots (P-CNDs). The effect is accompanied by a large shortwave shift of the emission peak. Highly passivated P-CNDs with sizes of around 3 nm were prepared from lactose and phosphoric acid, using a one-pot low temperature solvothermal method. The nanoparticles were purified according to polarity and size. The extent of blue shift and strength of enhancement depend on metal ions and actual pH value. For instance, the P-CND complex with Al(III) has a fluorescence that is shifted to shorter wavelengths, and the fluorescence quantum yield is enhanced from 12% (for the free P-CNDs) to almost 62% at 490 nm. The fluorescence is also enhanced and shifted by the ions Zn(II) and Cd(II). It is quenched by the ions Fe(II), Fe(III), Hg(II), Cu(II) and Sn(II), among others. The enhancement is attributed to the chelation of metal ions with the passivated surface functional groups of P-CNDs, mainly those of phosphorus. Phosphorous free CNDs (prepared via HCl instead of H3PO4) and low-passivated P-CNDs (prepared for longer period of time; typically 8 h) show no enhancement. The metal ion induced enhancement led to the design of a fluorometric assay for the detection of these ions. The detection limits are 4 nM for Al(III) and 100 nM for Zn(II). The two ions were quantified in spiked pharmaceutical formulations. Recoveries typically are 102% (for n = 7).
Graphical abstract The fluorescence emission of phosphorous doped carbon nanodots is significantly enhanced and tuned after binding to Al3+, Zn2+ and Cd2+. The enhancement mechanism is attributed to chelation enhanced fluorescence (CHEF).
  相似文献   

16.
The authors described gold nanoclusters (AuNCs) for use on an “on ? off ? on” NIR fluorescent probe for the determination of citrate and Cu(II) ion. The AuNCs were prepared by a microwave-assisted method using BSA as both the stabilizing and reducing agent. The resulting BSA-capped AuNCs display NIR fluorescence peaking at 680 nm under 500 nm excitation, a quantum yield of ~6.0%, an average size of 2.8 ± 0.5 nm, water-dispersibility, stability and biocompatibility. The on?off probe for Cu(II) is based on the interaction between Cu(II) and BSA which causes the fluorescence of the BSA?AuNCs to be quenched. The quenched fluorescence is recovered on addition of vitamin C (VC), obviously due to complexation of Cu(II) by citrate. The probe was employed to image Cu(II) and citrate in HeLa cells and in aqueous solutions. The method works in the 20 nM to 0.1 mM concentration range for Cu(II), and in the 8 nM to 120 μM concentration range for VC.
Graphical abstract Schematic presentation of the gold nanocluster based probe whose fluorescence is quenched by Cu(II) ions and then restored by addition of vitamin C. This is demonstrated for both aqueous solutions and living cells.
  相似文献   

17.
We describe the synthesis of novel quinonemonimines Cu(II) coordination complexes, of the type:

which, in addition to their intrinsic interest, have potential application in optical recording. The following key parameters have been highlighted: (i) the presence of coordinating arms on the quinonoid core of the ligand leads to octahedral complexes with increased solubility, (ii) the presence of Cu(II) as a metal centre leads to a favourable exothermic decomposition, (iii) the presence of quinonoid moieties results in the optical absorption to be in the desired wavelength range. To cite this article: P. Braunstein et al., C. R. Chimie 9 (2006).  相似文献   

18.
Gas phase infrared dissociation spectra of the radical cation, deprotonated and protonated forms of the hormone melatonin, and its complexes with alkali (Li+, Na+, and K+) and alkaline earth metal ions (Mg2+, Ca2+, and Sr2+) are measured in the spectral range 800–1800 cm?1. Minimum energy geometries calculated at the B3LYP/LACVP++** level are used to assign structural motifs to absorption bands in the experimental spectra. The melatonin anion is deprotonated at the indole-N. The indole-C linking the amide chain is the most favored protonation site. Comparisons between the experimental and calculated spectra for alkali and alkaline earth metal ion complexes reveal that the metal ions interact similarly with the amide and methoxy oxygen atoms. The amide I band undergoes a red shift with increasing charge density of the metal ion and the amide II band shows a concomitant blue shift. Another binding motif in which the metal ions interact with the amide-O and the π-electron cloud of the aromatic group is identified but is higher in energy by at least 18 kJ/mol. Melatonin is deprotonated at the amide-N with Mg2+ and the metal ion coordinates to the amide-N and an indole-C or the methoxy-O. These results provide information about the intrinsic binding of metal ions to melatonin and combined with future studies on solvated melatonin-metal ion complexes may help elucidate the solvent effects on metal ion binding in solution and the biochemistry of melatonin. These results also serve as benchmarks for future theoretical studies on melatonin-metal ion interactions.
Graphical Abstract ?
  相似文献   

19.
Ligated tetrapositive metal ions are rare gas-phase species which tend to form complexes with lower charges due to the high 4th ionization energies of metals. We report the observation of tetrapositive Zr(TMPDA)34+ and Zr(TMOGA)34+ complexes in the gas phase by electrospray ionization of Zr(ClO4)4/TMPDA and Zr(ClO4)4/TMOGA mixtures. The Zr4+ center in both complexes is coordinated by nine atoms from three neutral diamide ligands forming nine-coordinate twisted tricapped trigonal prismatic geometry on the basis of DFT calculations. Collision-induced dissociation of both complexes resulted in the loss of protonated ligands to form tripositive Zr(TMPDA)(TMPDA-H)3+ and Zr(TMOGA)(TMOGA-H)3+ products which retain the IV oxidation state of zirconium at the cost of charge reduction from 4+ to 3+ of the whole complexes. The very high 4th ionization energy of zirconium (34.34 eV) makes tetrapositive zirconium complex the most challenging tetracation to be stabilized against charge reduction in the gas phase to date.
Graphical abstract ?
  相似文献   

20.
New complexes of Co(II), Ni(II), Cu(II), and Zn(II) with new Schiff bases derived by the condensation of p-aminoacetophenoneoxime with 5-methoxysalicylaldehyde are synthesized. The compounds are characterized by elemental analyses, magnetic susceptibility measurements, IR, 1H and 13C NMR spectra, electronic spectral data, and molar conductivity. The thermal stabilities of the compounds are also reported. The Schiff base acts as bidentate O,N-donor atoms, and their metal complexes are supposed to possess a tetrahedral geometry with respect to the central metal ion. The general formula of the 5-methoxysalicyliden-p-aminoacetophenoneoxime Co(II), Ni(II), Cu(II), and Zn(II) complexes is Co(L)2, Ni(L)2, Cu(L)2, and Zn(L)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号