首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method has been developed for nanoparticles synthesis based on oligomers of sulfobutyl ether β-cyclodextrin (SBE-β-CD) and their structure has been studied by FTIR spectroscopy. The physicochemical properties of “guest?host” inclusion complexes formed by SBE-β-CD and its oligomers with moxifloxacin have been investigated. It has been shown that, as compared with SBE-β-CD, the synthesized oligomers have an increased affinity for moxifloxacin: the dissociation constants for the complexes of monomeric and oligomeric SBE-β-CD are (1.0 ± 0.3) × 10?4 and nearly 5 × 10?6 M, respectively. The binding efficiency increases due to the multy-point interaction of a moxifloxacin molecule with functional groups of the oligomeric carrier. SBE-β-CD oligomers are promising carriers for drugs, in particular, fluoroquinolone-based antibacterial agents, and may be used for the development of new compositions with improved solubility, bioavailability, and prolonged drug release.  相似文献   

2.
Telmisartan (TEL) is a BCS Class II drug having dissolution rate limited bioavailability. The aim of work was to enhance the solubility of TEL so that bioavailability problems are solved. β-Cyclodextrin (β-CD) based nanosponges (NSs) were formed by cross-linking β-CD with carbonate bonds, which were porous as well as nanosized. Drug was incorporated by solvent evaporation method. The effect of ternary component alkalizer (NaHCO3) on solubility of TEL was studied. In order to find out the solubilization efficiency of NS, phase solubility study was carried out. Saturation solubility and in vitro dissolution study of β-CD complex of TEL was compared with plain TEL and NS complexes of TEL. The NS and NS complexes of TEL were characterized by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, nuclear magnetic resonance and scanning electron microscope. It was found that solubility of TEL was increased by 8.53-fold in distilled water; 3.35-fold in 0.1 N HCl and 4.66-fold in phosphate buffer pH 6.8 by incorporating NaHCO3 in drug–NS complex than TEL. It was found that the NaHCO3 in NS based complex synergistically enhanced dissolution of TEL by modulating microenvironmental pH and by changing amorphization of the drug. The highest solubility and in vitro drug release was observed in inclusion complex prepared from NS and NaHCO3. An increase of 54.4 % in AUC was seen in case the ternary NS complex whereas β-CD ternary complex exhibited an increase of 79.65 %.  相似文献   

3.
The thermodynamics and stoichiometry of zaleplon (ZAL) complexation with different cyclodextrin derivatives [β-CD, hydroxypropyl-β-cyclodextrin (HP-β-CD), randomly methylated-β-cyclodextrin (RAMEB), sulphobutylether-β-cyclodextrin (SBE-β-CD)] in aqueous solution was studied by spectrofluorimetry and 1H NMR spectroscopy in order to obtain a more general understanding of the driving forces behind the inclusion phenomena. Job’s plot derived from the NMR spectral data and statistical analysis of spectrofluorimetric titration data confirmed the formation of equimolar complexes in all systems tested, excluding the possibility of higher order complex formation. Furthermore, thermodynamic parameters obtained by both techniques gave similar and negative values of ΔG° for all complexes, indicating spontaneous inclusion of drug into CDs. From a thermodynamic point of view, two types of inclusions were determined. One is enthalpy driven ZAL complexation with β-CD, HP-β-CD and RAMEB, while the other is entropy driven complexation observed in the case of SBE-β-CD. The mechanisms behind each type of inclusion were discussed in detail.  相似文献   

4.
In the present study influence of nature of selected cyclodextrins (CDs) and of methods of preparation of drug–CD complexes on the oral bioavailability, in vitro dissolution studies and pharmacodynamic activity of a sparingly water soluble drug rosuvastatin (RVS) was investigated. Phase solubility studies were conducted to find the interaction of RVS with β-CD and its derivatives, which indicated the formation of 1:1 stoichiometric inclusion complex. The apparent stability constant (K1:1) calculated from phase solubility diagram were in the rank order of β-CD < hydroxypropyl-β-cyclodextrin (HP-β-CD) < randomly methylated-β-cyclodextrin (RM-β-CD). Equimolar drug–CD solid complexes prepared by different methods were characterized by the Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). FTIR study demonstrated the presence of intermolecular hydrogen bonds and ordering of the molecule between RVS and CDs in inclusion complexes. DSC and XRD analysis confirmed formation of inclusion complex by freeze dried method with HP-β-CD and RM-β-CD. Aqueous solubility and dissolution studies indicated improved dissolution rates of prepared complexes in comparison with drug alone. Moreover, CD complexes demonstrated of significant improvement in reducing total cholesterol and triglycerides levels as compared to pure drug. However the in vivo results only partially agreed with those obtained from phase solubility studies.  相似文献   

5.
The formation of inclusion complexes between S-(?)-equol (SEq) and cyclodextrins (CDs) was investigated. The binding constant (Kc) of the SEq/sulfobutylether-β-cyclodextrin (SBE-β-CD) inclusion complex was determined to be 1600 L/mol based on UV data. The phenyl ring of the SEq molecule was found to be inserted from the secondary hydroxyl face of the SBE-β-CD as evidenced from 1H–1H rotating frame nuclear Overhauser effect spectroscopy (ROESY) NMR. The thermal properties of the solid SEq/SBE-β-CD inclusion complexes prepared by physical mixing, kneading and freeze-drying methods were studied by differential scanning calorimetry. For the solid complex obtained by the freeze-drying method, the endothermic peak corresponding to the melting point of SEq disappeared. The solid SEq/SBE-β-CD complexes exhibited a high score in antioxidant activity evaluation tests compared to SEq alone. Dissolution test revealed that the solid complex obtained by freeze-drying method had improved dissolution of SEq.  相似文献   

6.
Rufinamide (RUF) was characterized in terms of cyclodextrin (CD) complexation in order to improve its aqueous solubility. Binary systems of RUF with three CDs—β-cyclodextrin (β-CD), randomly methylated-β-cyclodextrin (RAMEB) and sulfobutylether-β-cyclodextrin (SBE-β-CD)—were characterized with a wide variety of analytical techniques. Liquid state characterization was carried out by complementary techniques such as nuclear magnetic resonance spectroscopy (NMR), capillary electrophoresis (CE), mass spectrometry (MS) and phase solubility studies. The latter revealed that the stability of the complexes decreased in the order of RAMEB?>?β-CD?>?SBE-β-CD. AL-type diagrams were obtained in all cases, characteristic of 1:1 stoichiometry, with a maximum of over 15-fold increase in RUF solubility, when complexed with RAMEB. NMR Job plot and MS studies confirmed phase solubility results, regarding the binding stoichiometry. 1H NMR and 2D ROESY investigations revealed the inclusion of the triazole moiety of RUF, confirmed by molecular modeling. Solid state complexation in 1:1 molar ratio was carried out by kneading method and investigated by differential scanning calorimetry (DSC) and infrared spectroscopy (IR). Comparative dissolution studies indicated an over two-fold improvement in dissolution efficacy of the kneaded products, when compared to the pure drug. Results of the present study might pave the way for a drug formulation with improved bioavailability.  相似文献   

7.
The ability of β-cyclodextrin (β-CD), γ-CD, hydroxypropyl-β-CD (HP-β-CD), trimethyl-β-CD (TM-β-CD), sulfurbutylether-β-CD (SBE-β-CD) and carboxymethyl-β-cyclodextrin (CM-β-CD) to break the aggregate of the meso-tetrakis(4-N-trimethylaminobenzyl)porphyrin (TAPP) and to form 2:1 inclusion complexes has been studied by absorption and fluorescence spectroscopy. The formation constants are calculated, respectively, by fluorimetry, from which the inclusion capacity of different CDs is compared and the inclusion mechanism of charged-β-CD (SBE-β-CD and CM-β-CD) is quite different from that of the parent β-CD. At lower pH, the complexation between TM-β-CD and H2TAPP2+ (the form of the diprotonated TAPP) hampers the continuous protonation of the pyrrole nitrogen of TAPP and the hydrophobic cavity may prefer to bind an apolar neutral porphyrin molecule. 1HNMR data support the inclusion conformation of the porphyrin–cyclodextrin supramolecular system, indicating the interaction of the meso-phenyl groups of TAPP with the cavity of CDs. For this host–guest inclusion model, cyclodextrin being regarded as the protein component, which acts as a carrier enveloping the active site of heme prosthetic group within its hydrophobic environment, provides a protective sheath for the porphyrin, creating artificial analogues of heme-containing proteins. However, for TAPP, encapsulated within this saccharide-coated barrier, its photophysical and photochemical properties changed strongly.  相似文献   

8.
The purpose of present investigation was to investigate the effect of complexation of Nelfinavir Mesylate (NM) – an Anti-HIV drug with Beta-cyclodextrin (β-CD) on its dissolution characteristics and subsequent effect on its absorption properties and bioavailability. Phase solubility studies were conducted to find the interaction of NM with β-CD. Physical mixing and milling method were used for complexation. The inclusion complexes were characterized by X-ray diffractometry, FT-IR and NMR studies and further studied by in-vitro dissolution testing. The plain NM and complex was subjected to intestinal absorption studies by using Everted intestinal sac model. Data was treated statistically by Mann–Whitney U test. Pharmacokinetic studies were carried out in rabbits using cross over design and data was treated by Student’s t test. Phase solubility studies confirmed 1:1 complex formation of NM with β-CD with stability constant of 204.84 M−1. In-vitro dissolution studies of inclusion complexes of NM with β-CD prepared by milling method (T 90=60.89 min) showed better dissolution rate kinetics in distilled water in comparison with plain NM (T 90=374.31). The increased solubility with decreased crystallinity is attributed by inclusion of NM in the cavity of β-CD, which was further confirmed by instrumental studies. Intestinal absorption studies further supports these findings by showing 2.13 times enhancement in the absorption rate of complex as compared to plain NM. The percent relative bioavailability of complex in rabbits was 185.37 as compared to the plain NM.  相似文献   

9.
Inclusion complexes using α-, β-, γ-, and hydroxypropyl-β-CD (HP-β-CD) were produced with the antibiotic enrofloxacin, with the aim of increasing its solubility by complexation. Phase solubility diagrams were obtained, to confirm the formation of inclusion complexes, and to determine the solubility enhancement and stability constant of each complex. Enrofloxacin inclusion in β-CD showed the highest value of the complex stability constant (35.56?mmol?L?1), but the greatest increase in solubility was obtained using HP-β-CD reaching a 1258% increase over enrofloxacin solubility in the absence of CD. The order of highest enrofloxacin solubility achieved was: HP-β-CD?>?α-CD?>?γ-CD?>?β-CD. In addition, formation of complexes was confirmed by differential scanning calorimetry and thermogravimetry, applied to the complexes obtained by the kneading technique. The influence of citric acid, alone or as an adjunct of β-CD, on the solubility of enrofloxacin was also determined. A solution of 15?mmol?L?1 citric acid dissolved 10?g?L?1 of enrofloxacin, but a gradual increase in β-CD concentration in the presence of citric acid did not increase the degree of solubilization of enrofloxacin.  相似文献   

10.
The characterization, inclusion complexation behavior and binding ability of the inclusion complexes of dihydroartemisinin with β-cyclodextrin and its derivatives, sulfobutyl ether β-cyclodextrin (SBE-β-CD), mono[6-(2-aminoethylamino)-6-deoxy]-β-cyclodextrin (en-β-CD) and mono{6-[2-(2-aminoethylamino)ethylamino]-6-deoxy}-β-cyclodextrin (dien-β-CD), were studied using phenolphthalein as a spectral probe. Spectral titration was performed in aqueous buffer solution (pH ca. 10.5) at 25 °C to determine the binding constants. The inclusion complexation behaviors were investigated in both solution and solid state by means of NMR, TG, XRD. The results showed that the water solubility and thermal stability of dihydroartemisinin were significantly increased in the inclusion complex with cyclodextrins (CDs). According to 1H NMR and 2D NMR spectroscopy (ROESY), the A, B rings of dihydroartemisinin can be included into the cavity of CDs. The enhanced binding ability of CDs towards dihydroartemisinin was discussed from the viewpoint of the size/shape-fit concept and multiple recognition mechanism between host and guest.  相似文献   

11.
Opipramol (OPI), a tricyclic antidepressant and anxiolytic compound, is administered orally in the form of a dihydrochloride. Salt form of the drug has a higher solubility in water and hence bioavailability and stability. A similar effect can be achieved by closing the hydrophobic part of the drug molecule in the cyclodextrin cavity. The paper presents opipramol inclusion complexes with beta-cyclodextrin (β-CD) in 1:1 molar ratio. Studies on the formation of inclusion complexes were carried out both in solution and in the solid state. The formation and physicochemical characterisation of the complexes were determined by UV spectroscopic measurement (UV–vis), Fourier Transform Infrared (FTIR) Spectroscopy, 1H Nuclear Magnetic Resonance (1H NMR, 2D NOESY NMR), thermoanalytical methods (TGA – Termogravimetric analysis, DSC – differential scanning calorimetry), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The phase solubility profile with β-CD was classified as the AN- type, indicating the formation of the inclusion complex with a drug.  相似文献   

12.
Molecular inclusion complexes of usnic acid (UA) with β-cyclodextrin (β-CD) and 2-hydroxypropyl β-cyclodextrin (HP β-CD) were prepared by the co-precipitation method in the solid state in the molar ratio of 1:1. Structural complexes characterization was based on different methods, FTIR, 1H NMR, XRD and DSC. Parallel to the complex by the above methods, corresponding physical mixtures of UA with cyclodextrins and complexing agents (β-CD, HP β-CD and UA) were analyzed. The results of DSC analysis showed that, at around 200 °C, the endothermal peak in the complexes with cyclodextrins originating from the UA melting has disappeared. Complex diffractogram patterns do not contain peaks characteristic for the pure UA. They are more appropriate to cyclodextrin diffractogram. This fact points to the molecular encapsulation of UA in the cyclodextrin cavity. Chemical shifts in 1H NMR spectra after the inclusion of UA into the cyclodextrin cavity, especially H-3 protons (0.0012 and 0.0102 ppm in the β-CD and HP β-CD, respectively) and H-5 and H-6 (0.0134 ppm) and hydrogen from CH3 (0.0073 ppm) HP β-CD also points to the formation of molecular inclusion complexes. The improved solubility of UA in water was achieved by molecular incapsulation. In the complex with β-CD the solubility is 0.3 mg/cm3, with HP β-CD 4.2 mg/cm3 while the uncomplexed UA solubility is 0.06 mg/cm3. The microbial activity of UA and both complexes was tested against eight bacteria and two fungi and during the test no reduced activity of UA in the complexes was observed.  相似文献   

13.
Fluconazole (FZ) is a triazole antifungal drug administered orally or intravenously. It is employed for the treatment of mycotic infections. However, the efficacy of FZ is limited with its poor aqueous solubility and low dissolution rate. One of the important pharmaceutical advantages of cyclodextrins is to improve pharmacological efficacy of drugs due to increasing their aqueous solubility. The aim of present study was to prepare an inclusion complex of FZ and β-cyclodextrin (β-CD) to improve the physicochemical and biopharmaceutical properties of FZ. The effects of β-CD on the solubility of FZ were investigated according to the phase solubility technique. Complexes were prepared with 1:1 M ratio by different methods namely, freeze-drying, spray-drying, co-evaporation and kneading. For the characterization of FZ/β-CD complex, FZ amount, practical yield %, thermal, aqueous solubility, XRD, FT-IR and NMR (1H and 13C) analysis were performed. In vitro dissolution from hard cellulose capsules containing FZ/β-CD complexes was compared to pure FZ and its commercial capsules and evaluated by f1 (difference) and f2 (similarity) factors. Paddle method defined in USP 31 together with high pressure liquid chromatographic method were used in in vitro dissolution experiments. It was found that solubility enhancement by FZ/β-CD complexes depends on the type of the preparation method. High release of active agent from hard cellulose capsules prepared with β-CD complexes compared to commercial capsules was attributed to the interactions between β-CD and active agent, high energetic amorphous state and inclusion complex formation.  相似文献   

14.
The host–guest inclusion complex structure and binding ability of two different quinolones with γ-cyclodextrin (γ-CD) were investigated in solution by means of UV–Vis and 1H NMR spectroscopy. Competition of oxolinic and nalidixic acid molecules for the γ-CD cavity was evaluated by determination of association constants. Both quinolones form 1:1 inclusion complexes, their binding constants at room temperature (25 °C) under acidic and basic conditions were calculated using Benesi–Hildebrand equation. The stability of the complexes was dependent on the structure of the quinolone. In general, the weaker binding constants were observed for oxolinic acid-γ-CD complexes (1616 and 1765 M?1) and the larger binding constants were obtained for nalidixic acid-γ-CD complexes (3760 and 3840 M?1). 1H NMR studies in D2O were performed to elucidate the structure of each inclusion complex, nalidixic acid molecule penetrates more deeply into the γ-CD cavity and an intermolecular hydrogen bond is formed. Knowledge about structure and relative stability of quinolone-γ-CD complexes will be useful for future applications of these antimicrobial agents in medicinal chemistry.  相似文献   

15.
Resveratrol (Res) is a plant-based polyphenol compound and is known to inhibit the growth of a variety of cancer cells and protect lipoproteins against oxidative damage. However the poor solubility and labile property may constitute a serious problem for its bioavailability. The problem could be overcome by the formation of inclusion complexes with cyclodextrins (CDs). The aim of this work is to include Res by β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-CD) to form the Res/β-CD and Res/HP-CD inclusion complexes and evaluate their cytotoxicity on cancer cells and inhibition of lipid peroxidation activity. The complexes are characterized by powder X-ray diffraction, fourier transform infrared spectroscopy and scanning electron microscopy. The cytotoxicity of the two complexes has been evaluated by methylthiazoletetrazolium reduction assay on two cancer cell lines (cervical carcinoma cells HeLa and hepatocellular liver cancer cells Hep3B) and one normal cell line (umbililical vein endothelial cell HUVEC). The results showed that the two complexes exhibit high cytotoxicity on two cancer cells, especially for Hep3B, and show no significant effect on normal cells. The Res/HP-CD complex shows higher cytotoxicity on the two cancer cells than that of the Res/β-CD complex. The inhibition of lipid peroxidation induced by Fe2+/ascorbate of the two inclusion complexes has been determined by thiobarbituric acid assay. The inhibition rate shows a linear increase with the increase of CDs concentration, and the Res/HP-CD complex shows stronger inhibition activity than that of the Res/β-CD complex. The results of this work indicate a potential for using the Res/CD complexes to inhibit human cancer growth and lipoproteins peroxidation.  相似文献   

16.
The purpose of this work was to develop a thermo-reversible flurbiprofen liquid suppository base composed of poloxamer and sodium alginate for the improvement of rectal bioavailability of flurbiprofen. Cyclodextrin derivatives such as α-, β-, γ-cyclodextrin and hydroxypropyl-β-cyclodextrin (HP-β-CD) were used to enhance the aqueous solubility of flurbiprofen. The effects of HP-β-CD and flurbiprofen on the physicochemical properties of liquid suppository were then investigated. Pharmacokinetic studies were performed after rectal administration of flurbiprofen liquid suppositories with and without HP-β-CD or after intravenous administration of commercial Lipfen® (flurbiprofen axetil-loaded emulsion) to rats, and their pharmcokinetic parameters were compared. HP-β-CD decreased the gelation temperature and reinforced the gel strength and bioadhesive force of liquid suppository, while flurbiprofen was opposed to HP-β-CD. Thermo-reversible flurbiprofen liquid suppository showed the physicochemical properties suitable for rectal administration. The flurbiprofen liquid suppository with HP-β-CD showed significantly higher plasma levels, AUC and Cmax of flurbiprofen than those of the liquid suppository without HP-β-CD, indicating that flurbiprofen could be well absorbed due to the enhanced solubility by formation of inclusion complex. Moreover, the flurbiprofen liquid suppository with HP-β-CD showed an excellent bioavailability in that the AUC of flurbiprofen after its rectal administration was not significantly different from that after intravenous administration of commercial Lipfen®. It is concluded that HP-β-CD could be a preferable solubility enhancer for the development of liquid suppository containing poorly water-soluble drugs.  相似文献   

17.
采用溶解度法研究了不同pH值下氯诺昔康与中性及电荷型β-环糊精衍生物的包合作用.结果表明,氯诺昔康与3种环糊精都形成了1:1的包合物.以包合常数作为包合作用的量度,在酸性和中性条件下包合能力较碱性强,其中磺丁醚-β-环糊精(SBE移CD)在酸性条件下包合常数最大.电荷型伊环糊精除了通常的疏水作用力为主客体间包合驱动力外,还存在额外的静电包合作用力.  相似文献   

18.
The solubility of α-lipoic acid (LA) with the addition of modified cyclodextrins was investigated using the solubility method. The solubility of LA in the presence of β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), mono-6-O-glucopyranosyl-β-cyclodextrin (mono-G1-β-CD), methyl-β-cyclodextrin (Me-β-CD), 2,6-di-O-methyl-β-cyclodextrin (DM-β-CD), and sulfobutylether-β-cyclodextrin (SBE-β-CD) was higher than that of LA itself. In particular, the solubility of LA in the presence of SBE-β-CD was 20 times higher than that of LA alone. The structure of the inclusion complex of SBE-β-CD and LA in aqueous solution was examined by 1H-1H ROESY NMR spectroscopy. The 1,2-dithiolane moiety of LA was included from the secondary hydroxyl face of SBE-β-CD. The solid complexes of LA and SBE-β-CD were prepared by the kneading and freeze-drying methods. Formation of the solid complexes was confirmed by X-ray diffraction patterns (XRD), differential scanning calorimetry (DSC), and infrared spectroscopy (IR). The kneading and freeze-drying methods were successful for obtaining the solid inclusion complexes with improved thermal stability.  相似文献   

19.
The objective of this research was to improve the aqueous solubility, dissolution rate and, consequently, bioavailability of diacerein, along with avoiding its side effect of diarrhea, by complexation with β-cyclodextrin (β-CD) and HP-β-cyclodextrin (HP-β-CD). Phase solubility curve was classified as an AN type for both the CDs, which indicated formation of complex of diacerein with β-CD and HP-β-CD in 1:1 stoichiometry and demonstrating that both CDs are proportionally less effective at higher concentrations. The complexes were prepared by kneading method and were evaluated to study the effect of complexation on aqueous solubility and rate of dissolution in phosphate buffer (pH 6.8). Based on the dissolution profile HP-β-CD was selected for preparing fast disintegrating tablet of diacerein which was compared with marketed formulation (MF-J). The HP-β-CD complex was probed for Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies which evidenced stable complex formation and increase in amorphousness of diacerein in complex. In brief, the characterization studies confirmed the inclusion of diacerein within the non-polar cavity of HP-β-CD. HP-β-CD complex showed improved in vitro drug release profile compared to pure drug and similar to that of marketed formulation respectively.  相似文献   

20.
This study aimed to investigate the effect of hydroxypropyl methylcellulose on the complexation of fenofibrate and hydroxypropyl-β-cyclodextrin (HP-β-CD). Initially, phase solubility studies with an excess amount of drug in the HP-β-CD solutions with and without hydroxypropyl methylcellulose (HPMC) were investigated. Both of the binary and ternary complexes were prepared by ball-milling. The complexes were characterized by Fourier transform infrared spectroscopy (FI-IR), X-ray powder diffraction (XPRD), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (1H-NMR). The AL type phase-solubility diagram revealed that the complexes of fenofibrate and HP-β-CD were formed with molecular ratio of 1:1. The results of FT-IR, XPRD, DSC and 1H NMR analysis show the formulation of inclusion complexes. In conclusion, the interaction occurrs between fenofibrate and HP-β-CD in the complexes, and the existence of HPMC effectively improves the complexation efficiency and stability constant. The in vitro dissolution test suggests ternary complex is superior to binary complex in terms of the release of fenofibrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号