首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stepwise synthesis of mixed monodentate bis-NHC complexes of Ir(I), employing Ag(I)NHC complexes as transfer agents, yields complexes with two monodentate NHCs having different steric and electronic characteristics. The crystal structure of the mixed complex (5) with both a triazole-derived NHC ligand and an imidazole-derived NHC ligand is reported and both the NHC ring geometry and the M-NHC bond lengths are similar to related complexes. The complexes maintain their integrity over time and do not disproportionate, consistent with the NHC ligands not being labile.  相似文献   

2.
N-heterocyclic carbenes (NHCs) have garnered much attention due to their unique properties, such as strong σ-donating and π-accepting abilities, as well as their transition-metal-like reactivity toward small molecules. In 2015, we discovered that NHCs can react with nitric oxide (NO) gas to form radical adducts that resemble transition metal nitrosyl complexes. To elucidate the analogy between NHC and transition metal NO adducts, here we have undertaken a systematic investigation of the electron- and proton-transfer chemistry of [NHC−NO]⋅ (N-heterocyclic carbene nitric oxide radical) compounds. We have accessed a suite of compounds, comprised of [NHC−NO]+, [NHC−NO], [NHC−NOH]0, and [NHC−NHOH]+ species. In particular, [NHC−NO] was isolated as potassium and lithium ion adducts. Most interestingly, a monomeric potassium [NHC−NO] compound was isolated with the assistance of 18-crown-6, which is the first instance of a monomeric alkali N-oxyl compound to the best of our knowledge. Our results demonstrate that [NHC−NO]⋅ exhibits redox behavior broadly similar to metal nitrosyl complexes, which opens up more possibilities for utilizing NHCs to build on the known reactivity of metal complexes.  相似文献   

3.
N-Heterocyclic carbenes (NHCs) are widely used as ligands in catalysis by transition metal complexes. The catalytic activity of transition metal NHC complexes is much higher than that of the transition metal complexes bearing the phosphine and nitrogen-containing ligands. They show excellent catalytic performance in different transformations of the organic compounds, especially in the carbon—carbon and carbon—element bond forming reactions. Palladium NHC complexes are very efficient catalysts for the cross-coupling reactions. On the other hand, nickel is less expensive and regarded as a promising alternative to palladium and, therefore, it attracts increasing attention from the researches. The present review is focused on the recent advances in the synthesis of N-heterocyclic carbene complexes of nickel and palladium and their application in catalysis of cross-coupling reactions of organic, organoelement and organometallic compounds with organic halides.  相似文献   

4.
《Comptes Rendus Chimie》2017,20(7):773-804
This article presents a review of the most significant developments with N-heterocyclic carbene (NHC)–palladium catalytic systems used for the Heck reaction. For more than the past two decades, a large number of new NHC–Pd complexes have been synthesized and characterized. These studies focused on NHCs as a phosphine analogue, but the current review highlights the differences with particular ligands so as to attain a suitable balance between the electronic and bulky environments around the metal. NHCs have gained wide recognition as these ligands act as excellent σ-donors that form stable metal–NHCs with strong metal–carbon bonds. For this reason, metal–NHCs are commonly used as they are highly reactive and can selectively serve as catalysts for various chemical transformations. The objective of our article is to highlight significant recent progress in NHC–Pd(II) complexes and provide an overview of their extensive interaction in the Mizoroki–Heck reaction.  相似文献   

5.
A theoretical examination of the L-E-E-L class of molecules has been carried out (E = group 14, group 15 element; L = N-heterocyclic carbene, phosphine), for which Si, Ge, P, and As-NHC complexes have recently been synthesized. The focus of this study is to predict whether it is possible to stabilize the elusive E(2) molecule via formation of L-E-E-L beyond the few known examples, and if the ligand set for this class of compounds can be extended from the NHC to the phosphine class of ligands. It is predicted that thermodynamically stable L-E-E-L complexes are possible for all group 14 and 15 elements, with the exception of nitrogen. The unknown ligand-stabilized Sn(2) and Pb(2) complexes may be considered attractive synthetic targets. In all cases the NHC complexes are more stable than the phosphines, however several of the phosphine derivatives may be isolable. The root of the extra stability conferred by the NHC ligands over the phosphines is determined to be a combination of the NHCs greater donating ability, and for the group 15 complexes, superior π acceptor capability from the E-E core. This later factor is the opposite as to what is normally observed in transition metal chemistry when comparing NHC and phosphine ligands, and may be an important consideration in the ongoing "renaissance" of low-valent main group compounds supported by ligands.  相似文献   

6.
Carbene transition‐metal complexes have become a prevalent family of catalysts enabling numerous organic transformations. Their facile synthetic access is a matter of great importance. To this end, the CuI‐NHC transfer methodology has emerged as a powerful alternative presenting attractive advantages over other methods. Herein, we report the remarkable ability of copper to transfer not only NHCs but also other types of carbenes such as abnormal NHCs (aNHCs), cyclic (alkyl)(amino)carbenes (CAACs), and mesoionic carbenes (MICs) to various transition metal precursors.  相似文献   

7.
The remarkable resilience of N‐heterocyclic carbene (NHC) gold bonds has quickly made NHCs the ligand of choice when functionalizing gold surfaces. Despite rapid progress using deposition from free or CO2‐protected NHCs, synthetic challenges hinder the functionalization of NHC surfaces with protic functional groups, such as alcohols and amines, particularly on larger nanoparticles. Here, we synthesize NHC‐functionalized gold surfaces from gold(I) NHC complexes and aqueous nanoparticles without the need for additional reagents, enabling otherwise difficult functional groups to be appended to the carbene. The resilience of the NHC?Au bond allows for multi‐step post‐synthetic modification. Beginning with the nitro‐NHC, we form an amine‐NHC terminated surface, which further undergoes amide coupling with carboxylic acids. The simplicity of this approach, its compatibility with aqueous nanoparticle solutions, and its ability to yield protic functionality, greatly expands the potential of NHC‐functionalized noble metal surfaces.  相似文献   

8.
A series of N‐heterocyclic carbene–PdCl2–imidazole [NHC–Pd(II)–Im] complexes were synthesized and the structure of most of them was unambiguously determined by X‐ray single‐crystal diffraction. The structure–activity relationship of these complexes was investigated for the Suzuki–Miyaura coupling between 4‐methoxyphenyl chloride and phenylboronic acid, and the effect of the NHCs and Im moieties were fully discussed. The sterically hindered IPr‐based complex showed the highest catalytic activity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
N‐Heterocyclic carbenes (NHCs) are of great importance and are powerful ligands for transition metals. A new series of sterically hindered benzimidazole‐based NHC ligands (LHX) ( 2a , 2b , 2c , 2d , 2e , 2f ), silver–NHC complexes ( 3a , 3b , 3c , 3d , 3e , 3f ) and palladium–NHC complexes ( 4a , 4b , 4c , 4d , 4e , 4f ) have been synthesized and characterized using appropriate spectroscopic techniques. Studies have focused on the development of a more efficient catalytic system for the Suzuki coupling reaction of aryl chlorides. Catalytic performance of Pd–NHC complexes and in situ prepared Pd(OAc)2/LHX catalysts has been investigated for the Suzuki cross‐coupling reaction under mild reaction conditions in aqueous N,N‐dimethylformamide (DMF). These complexes smoothly catalyzed the Suzuki–Miyaura reactions of electron‐rich and electron‐poor aryl chlorides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The new N‐heterocyclic carbene (NHC) precursors 4, ‐dicyano‐1, ‐dimesityl‐ ( 9 ) and 4, 5‐dicyano‐1, 3‐dineopentyl‐2‐(pentafluorophenyl)imidazoline ( 14 ) were synthesized. The structure of 9 could be determined by X‐ray crystallography. With the 2‐pentafluorophenyl‐substituted imidazolines 9 and 14 , the [AgCl(NHC)], [RhCl(COD)(NHC)], and [RhCl(CO)2(NHC)] complexes [NHC = 4, 5‐dicyano‐1, 3‐dimesitylimidazol‐2‐ylidene ( 3 ) and 4, 5‐dicyano‐1, 3‐dineopentylimidazol‐2‐ylidene ( 4 )] were obtained. Crystal structures of [AgCl( 3 )] ( 15 ), [RhCl(COD)( 3 )] ( 17 ), [RhCl(COD)( 4 )] ( 18 ), and [RhCl(CO)2( 3 )] ( 19 ) were solved and with the crystal data of 19 , the percent buried volume ( %Vbur) of 31.8(±0.1) % was determined for NHC 3 . Infrared spectra of the imidazolines 9 and 14 and of the complexes 15 – 20 were recorded and the CO stretching frequencies of complexes 19 and 20 were used to determine the Tolman electronic parameters of the newly obtained NHCs 3 (TEP: 2060 cm–1) and 4 (TEP: 2061 cm–1), thus proving that 1, 3‐substitution of maleonitrile‐NHCs does not have a significant effect for the high π‐acceptor strength of these carbenes.  相似文献   

11.
Iron salts and N-heterocyclic carbene (NHC) ligands is a highly effective combination in catalysis, with observed catalytic activities being highly dependent on the nature of the NHC ligand. Detailed spectroscopic and electronic structure studies have been performed on both three- and four-coordinate iron(ii)–NHC complexes using a combined magnetic circular dichroism (MCD) and density functional theory (DFT) approach that provide detailed insight into the relative ligation properties of NHCs compared to traditional phosphine and amine ligands as well as the effects of NHC backbone structural variations on iron(ii)–NHC bonding. Near-infrared MCD studies indicate that 10Dq(T d) for (NHC)2FeCl2 complexes is intermediate between those for comparable amine and phosphine complexes, demonstrating that such iron(ii)–NHC and iron(ii)–phosphine complexes are not simply analogues of one another. Theoretical studies including charge decomposition analysis indicate that the NHC ligands are slightly stronger donor ligands than phosphines but also result in significant weakening of the Fe–Cl bonds compared to phosphine and amine ligands. The net result is significant differences in the d orbital energies in four-coordinate (NHC)2FeCl2 complexes relative to the comparable phosphine complexes, where such electronic structure differences are likely a significant contributing factor to the differing catalytic performances observed with these ligands. Furthermore, Mössbauer, MCD and DFT studies of the effects of NHC backbone structure variations (i.e. saturated, unsaturated, chlorinated) on iron–NHC bonding and electronic structure in both three- and four-coordinate iron(ii)–NHC complexes indicate only small differences as a function of backbone structure, that are likely amplified at lower oxidation states of iron due to the resulting decrease in the energy separation between the occupied iron d orbitals and the unoccupied NHC π* orbitals.  相似文献   

12.
Recent work is discussed that throws light on synthetic, steric, and electronic aspects of NHC complexes as well as on outer sphere effects in their reactivity. The chemistry of the NHC ligand is much more complex than the more traditional phosphines and provides much greater possibilities for altering steric and electronic properties for tuning reactivity. In synthetic work the Lin Ag2O method is shown to be inapplicable to the synthesis of abnormal NHCs bound via C-4(5) where the C2 position is blocked with CH3, because Ag(I) oxidizes the CH3 group to formate with formation of the normal C-2 bound Ag-NHC. Linker effects on the behavior of chelating NHCs depend on the linker locking the azole rings into a conformation that depends on linker length. This gives rise to different complexes being formed when different linker lengths are employed. The failure of M-NHC bonds to reversibly dissociate can prevent potentially chelating bis and tris NHC precursors from forming the desired products but instead being trapped in a kinetic nonchelate form. Imidazolium carboxylates prove to be synthetically useful in that they can act as excellent NHC transfer agents to a variety of transition metals. The Tolman electronic parameter of NHCs can be determined by a variety of experimental and computational methods. Anion dependent chemistry can give rise to a switching of the product of imidazolium salt metallation from normal (C-2) to abnormal (C-4(5)) forms.  相似文献   

13.
In the last decade, chemists have dedicated many efforts to investigate the coordination chemistry of N-heterocyclic carbenes (NHCs). Although most of that research activity has been devoted to mononuclear complexes, transition-metal carbonyl clusters have not escaped from these investigations. This critical review, which is focussed on the reactivity of NHCs (or their precursors) with transition-metal carbonyl clusters (mostly are of ruthenium and osmium) and on the transformations underwent by the NHC-containing species initially formed in those reactions, shows that the polynuclear character of these metallic compounds or, more precisely, the close proximity of one or more metal atoms to that which is or can be attached to the NHC ligand, is responsible for reactivity patterns that have no parallel in the NHC chemistry of mononuclear complexes (74 references).  相似文献   

14.
There has been much debate about the σ‐donor and π‐acceptor properties of N‐heterocyclic carbenes (NHCs). While a lot of synthetic modifications have been performed with the goal of optimizing properties of the catalyst to tune reactivity in various transformations (e.g. metathesis), direct methods to characterize σ‐donor and π‐acceptor properties are still few. We believe that dynamic NMR spectroscopy can improve understanding of this aspect. Thus, we investigated the intramolecular dynamics of metathesis precatalysts bearing two NHCs. We chose four systems with one identical NHC ligand (N,N′‐Bis(2,4,6‐trimethylphenyl)‐imidazolinylidene (SIMes) in all four cases) and NHCewg ligands bearing four different electron‐withdrawing groups (ewg). Both rotational barriers of the respective Ru‐NHC‐bonds change significantly when the electron density of one of the NHCs (NHCewg) is modified. Although it is certainly not possible to fully dissect σ‐donor and π‐acceptor portions of the bonding situations in the respective Ru‐NHC‐bond via dynamic NMR spectroscopy, our studies nevertheless show that the analysis of the rotation around the Ru‐SIMes‐bond can be used as a spectroscopic parameter complementary to cyclic voltammetry. Surprisingly, we observed that the rotation around the Ru‐NHCewg‐bond shows the same trend as the initiation rate of a ring‐closing metathesis of the four investigated bis‐NHC‐complexes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
N-Heterocyclic carbenes (NHCs) are an important class of reactive organic molecules used as ligands, organocatalysts, and σ-donors in a variety of electroneutral ylide or betaine adducts with main-group compounds. An emerging class of betaine adducts made from the reaction of NHCs with carbodiimides (CDIs) form zwitterionic amidinate-like structures with tunable properties based on the highly modular NHC and CDI scaffolds. The adduct stability is controlled by the substituents on the CDI nitrogens, while the NHC substituents greatly affect the configuration of the adduct in the solid state. This Perspective is intended as a primer to these adducts, touching on their history, synthesis, characterization, and general properties. Despite the infancy of the field, NHC–CDI adducts have been applied as amidinate-type ligands for transition metals and nanoparticles, as junctions in zwitterionic polymers, and to stabilize distonic radical cations. These applications and potential future directions are discussed.

N-heterocyclic carbene-carbodiimide betaine adducts are zwitterionic amidinate-like structures with tunable properties that have applications as ligands, junctions in supramolecular polymers, and stabilizers for radical cations.  相似文献   

16.
Two novel anellated N-heterocyclic carbenes (NHC), 1,3-dineopentylnaphtho[2,3-d]imidazol-2-ylidene, and 1,3-dineopentyl-2-ylido-imidazolo[4,5-b]pyridine were obtained by reduction of the respective thiones with potassium, the former also by deprotonation of the corresponding naphthimidazolium hexafluorophosphate by using excess KH in THF. The use of equimolar amounts of KH provided an unexpected formal addition product of this NHC with KOH. X-ray crystal structure analysis of the adduct provided evidence for a distorted tetrameric N-heterocyclic alkoxide, stabilized by two THF molecules. In C(6)D(6) the compound undergoes disproportionation. Transition-metal complexes [(NHC)AgCl], [(NHC)Rh(cod)Cl], and (E)-[(NHC)(2)PdCl(2)] of the novel naphthimidazol-2-ylidene were synthesized. X-ray crystal structures and (1)H and (13)C NMR spectroscopic data provided detailed structural information. Comparing characteristic data with those of nonanellated and differently anellated NHCs or their complexes provides information on the influence of the extended anellation.  相似文献   

17.
Peng HM  Song G  Li Y  Li X 《Inorganic chemistry》2008,47(18):8031-8043
A new type of quinoline-functionalized palladium N-heterocyclic carbene (NHC) complexes has been synthesized via silver transmetallation. The quinoline moiety was either directly attached to the imidazole ring or linked to it by a methylene group. NHCs with a methylene linker tend to form trans biscarbene complexes in the reaction of Pd(COD)Cl2, while NHCs without any linker form chelating NHC-quinoline (NHC-N) complexes. These two types of carbenes also react with [Pd(allyl)Cl]2 to give monodentate NHC palladium eta(3)-allyl chlorides [Pd(NHC)(allyl)Cl]. Fluxionality in the NMR time scale was observed for most complexes, and the origin of their dynamic behaviors was discussed for each type of structure. For [Pd(NHC)(allyl)Cl] with a relatively small wing tip group of the NHC, the fluxionality (selective line-broadening of (1)H NMR signals) is caused by selective eta(3)-eta(1)-eta(3) allyl isomerization. For NHC with a bulkier (t)Bu group, a different line-broadening pattern was observed and was ascribed to partially hindered Pd-C(carbene) bond rotation. For cationic chelating complexes [Pd(NHC-N)(allyl)]BF4, the dynamic exchange process likely originates from a dissociative boat-to-boat inversion of 7-membered palladacycles. Activation parameters were measured for this process. Crystal structures were reported for representative complexes in each category.  相似文献   

18.
1,3‐Diarylsubstituted imidazolinium salts, (NHC‐H)Cl, 3, containing hydrogen or alkyl groups at the 4,5‐positions of the imidazolidine ring, served as precursors to rhodium(I) complexes [RhCl(NHC)COD], 4, which were converted into cis‐[RhCl(NHC)(CO)2] complexes, 5. All compounds prepared were characterized by elemental analyses, 1H NMR and 13C NMR. The relative σ‐donor/π‐acceptor strength of the NHC ligands was determined by means of IR spectroscopy of 5. The ability of NHCs in 4 to enchance activity was explored in the 1,2‐addition of phenylboronic acid to aldehydes. A good correlation was observed between catalytic activity and the electron‐donating power of the NHC ligands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A detailed investigation on the thermodynamic and kinetic stability of four carbenic tautomers of quinoline 1 , including quinoline‐2‐ylidene 2 , quinoline‐3‐ylidene 3 , quinoline‐4‐ylidene 4 , and 3,4‐dihydroquinoline‐4‐ylidene 5 , reveals that singlet planar six‐membered ring N‐heterocyclic carbenes (NHCs) 2 and 4 have less stability than Arduengo type NHC but seems to have enough conceivably for reaching at B3LYP/aug‐cc‐pVTZ//B3LYP/6–31+G* and B3LYP/6–311++G**//B3LYP/6–31+G* levels. All these six‐membered NHCs are extremely ambiphilic with the more nucleophilic and electrophilic characters compared to the Arduengo type one. The aromaticity of singlet 2 and 4 is a significant contributor to their stability which is confirmed through their Nucleus‐independent chemical shift(1)zz values. Finally, among 2–5 , the normal NHC 2 is thermodynamically preferred but the remote NHC 4 is kinetically proffered over the other isomeric carbenes. The effects of different N‐ or C‐substituted NHCs of 2 are studied using appropriate isodesmic reactions. The trimethylsilyl substituent exhibits slightly larger carbene stabilization in quinoline‐derived NHCs than the pyridine analogue. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The remarkable resilience of N-heterocyclic carbene (NHC) gold bonds has quickly made NHCs the ligand of choice when functionalizing gold surfaces. Despite rapid progress using deposition from free or CO2-protected NHCs, synthetic challenges hinder the functionalization of NHC surfaces with protic functional groups, such as alcohols and amines, particularly on larger nanoparticles. Here, we synthesize NHC-functionalized gold surfaces from gold(I) NHC complexes and aqueous nanoparticles without the need for additional reagents, enabling otherwise difficult functional groups to be appended to the carbene. The resilience of the NHC−Au bond allows for multi-step post-synthetic modification. Beginning with the nitro-NHC, we form an amine-NHC terminated surface, which further undergoes amide coupling with carboxylic acids. The simplicity of this approach, its compatibility with aqueous nanoparticle solutions, and its ability to yield protic functionality, greatly expands the potential of NHC-functionalized noble metal surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号