首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of an intense circularly polarized laser pulse with a layer of plasma of supercritical density is studied. The nonlinear skin effect for the electromagnetic field and the coefficient of collisionless absorption of the laser pulse were calculated analytically. It is shown that, in the process of interaction with the plasma, the laser pulse generates solitons propagating through the plasma layer and transferring the radiation through the opaque medium. The coefficient of transparency of the plasma layer for the soliton-like penetration of the laser radiation was calculated. The plasma parameters at which the collisionless absorption is small as compared to the transformation of the laser energy into solitons were found.  相似文献   

2.
研究了激光辐射压驱动的两级质子加速的相关问题。当超短超强激光脉冲与处在背景等离子体前方的薄固体平靶相互作用时,在固体靶后部形成一个电子层-离子层组成的双层结构。在激光的不断推进下,双层结构在背景等离子体里以一定速度传播,可以看成运动在背景等离子体中的电场。这样,在背景等离子体中的质子被这个运动电场捕获并能加速到很高的能量。通过二维PIC模拟方法和理论分析研究了质子加速的相关问题。研究结果表明,被加速质子的最大能量达到20GeV。  相似文献   

3.
By the example of a plasma layer, the problem of the Coulomb explosion of metal during exposure to a powerful picosecond laser pulse was numerically simulated. It was shown that plasma electrons leave the plasma layer under the ponderomotive force in the direction against the gradient of the laser radiation field, while ions fly apart in the field of the self-charge.  相似文献   

4.
5.
An efficient emission of picosecond bunches of energetic protons and carbon ions from a thin layer spalled from a organic solid by a laser prepulse is demonstrated numerically. We combine the molecular dynamics technique and multi-component collisional particle-in-cell method with plasma ionization to simulate the laser spallation and ejection of a thin (∼20–30 nm) solid layer from an organic target and its further interaction with an intense femtosecond laser pulse. In spite of its small thickness, a layer produced by laser spallation efficiently absorbs ultrashort laser pulses with the generation of hot electrons that convert their energy to ion energy. The efficiency of the conversion of the laser energy to ions can be as high as 20%, and 10% to MeV ions. A transient electrostatic field created between the layer and surface of the target is up to 10 GV/cm. Received: 13 March 2001 / Accepted: 20 March 2001 / Published online: 20 June 2001  相似文献   

6.
Inverse bremsstrahlung is one important way to deliver laser energy to the plasma in inertial confinement fusion. In this article, we study the collisional absorption rate as obtained from the Fokker–Planck treatment of an unmagnetized plasma in harmonic laser field. The electron–ion collision rate is considered in the Krook approximation, and the electron distribution function is considered a Maxwellian function. We evaluate the inverse bremsstrahlung absorption near the irradiated plasma surface in the critical layer. We observe that absorption increases with shorter laser wavelength and lower electron temperatures. When the maximum electron velocity in the limit of q → 1 reaches infinity, the q-non-extensive distribution function reduces to the standard Maxwell-Boltzmann distribution.  相似文献   

7.
A numerical experiment in which two relativistically intense laser pulses are normally incident on a layer of a diluted plasma from two opposite sides is described. The period of Langmuir plasma oscillations is much larger than the pulse duration and the product of this period by the speed of light is much larger than the thickness of the layer. A pulse propagating to the right is incident on the layer earlier than the counter pulse and carries a significant fraction of electrons or all of the electrons from the plasma. Under certain conditions, electrons form a bunch, which contains most of the electrons and has a thickness much smaller than the wavelength of light. The counter pulse perturbs the motion of the bunch and initiates the emission of a short few-cycle pulse, which propagates in the positive direction (to the right), significantly differs in structure from the counter pulse, and has a duration much smaller than the field period in laser pulses.  相似文献   

8.
在惯性约束聚变物理研究中,等离子体界面处的动理学效应及其时空演化特性近年来受到重点关注,因为它会显著影响激光能量沉积、激光等离子体不稳定性、辐照对称性、黑腔和内爆性能等诸多物理。准确描绘等离子体特征界面附近的动理学效应是惯性约束聚变物理设计的基本需求,也是高能量密度物理中的具有挑战且未完全解决的问题。重点回顾近几年来本团队围绕等离子体动理学效应及其影响开展的一些研究工作:(1)聚变黑腔中金等离子体与靶丸冕区等离子体边缘处的电场结构及其加速的高能离子对内爆对称性的影响;(2)激光光路上高Z-低Z等离子体界面处的电场产生机制及其导致的反常离子扩散对激光等离子体不稳定性的影响;(3)等离子体中电磁场结构的质子照相反演。  相似文献   

9.
We describe the first-ever volumetric, time-resolved measurements performed with a moving probe within an expanding dense plasma, embedded in a background magnetized plasma. High-resolution probe measurements of the magnetic field and floating potential in multiple 2D cut planes combined with a 1 Hz laser system reveal complex three-dimensional current systems within the expanding plasma. Static (ωreal=0) flutelike density striations are observed at the leading edge of the plasma, which are correlated to variations in the current layer at the edge of the expanding plasma.  相似文献   

10.
稠密等离子体层的透明性   总被引:1,自引:1,他引:0  
陈强  沈百飞 《光学学报》2004,24(1):7-61
在圆偏振高强度激光脉冲的传播过程中,对稠密等离子体层从不透明向透明的转变从理论上和以模拟的方法进行了研究。在有些情况下,流体方程不再能给出稳态解,此时必须考虑相互作用的动力学部分。研究发现,稳态解是否存在,和等离子体是否透明相联系。还发现,透明性不仅决定于电子密度和激光强度,而且决定于等离子体层的厚度。当没有稳态解时,等离子体开始变得透明,称之为绝对透明。当等离子体透明时,几乎没有光压作用在等离子体上,因此电子密度几乎不变。  相似文献   

11.
超短脉冲强激光与固体靶作用产生的高次谐波红移   总被引:1,自引:0,他引:1       下载免费PDF全文
张秋菊  盛政明  张杰 《物理学报》2004,53(7):2180-2183
用一维粒子模拟程序研究了超短脉冲强激光与超临界密度等离子体平板作用产生的高次谐波。分析了振荡镜面模型所不能解释的伴随高次谐波出现的频率红移现象。通常激光与固体靶作用中的高次谐波是由于激光从振荡靶面的反射产生的.除此之外,相对论光强的激光与固体靶作用还应考虑光压对靶的烧蚀推进作用,这时激光相当于从一个移动的振荡靶面反射,所以产生了带有红移的高次谐波. 关键词: 红移 超短脉冲强激光 高次谐波 粒子模拟  相似文献   

12.
Electron bunches of attosecond duration may coherently interact with laser beams. We show how p-polarized ultraintense laser pulses interacting with sharp boundaries of overdense plasmas can produce such bunches. Particle-in-cell simulations demonstrate attosecond bunch generation during pulse propagation through a thin channel or in the course of grazing incidence on a plasma layer. In the plasma, due to the self-intersection of electron trajectories, electron concentration is abruptly peaked. A group of counterstream electrons is pushed away from the plasma through nulls in the electromagnetic field, having inherited a peaked electron density distribution and forming relativistic ultrashort bunches in vacuum.  相似文献   

13.
Investigations on the ambipolar diffusion of an electron-hole plasma transverse to a magnetic field have been carried out in InSb. A plasma layer, produced at the surface of the sample by a short laser pulse, was moved through the sample in crossed electric and magnetic fields by the Lorentz force. From the broadening of the plasma layer we found at 80K an enhanced diffusion coefficient which decreased proportional to 1/B for magnetic fields higher than 1T, constrary to the expected classical 1/B 2 dependence. Furthermore, the diffusion coefficient was strongly dependent on the electric field. The ambipolar drift velocity, measured simultaneously showed a classical behaviour. Together with the enhanced diffusion we observed instabilites in the electric potential. The instability threshold decreased towards the cathode.  相似文献   

14.
In this paper, self-focusing of an intense circularly polarized laser beam in the presence of a non-uniform positive guide magnetic field with slope constant parameter δ in hot magnetized plasma, using Maxwell’s equations and relativistic fluid momentum equation is investigated. An envelope equation governing the spot-size of laser beam for both of left- and right-hand polarizations has been derived, and the effects of the plasma temperature and magnetic field on the electron density distribution of hot plasma with respect to variation of normalized laser spot-size has been studied. Numerical results show that self-focusing is better increased in the presence of an external non-uniform magnetic field. Moreover, in plasma density profile, self-focusing of the laser pulse improves in comparison with no non-uniform magnetic field. Also, with increasing slope of constant parameter of the non-uniform magnetic field, the self-focusing increases, and subsequently, the spot-size of laser pulse propagated through the hot magnetized plasma decreases.  相似文献   

15.
San-Qiu Liu  Hua-Ying Chen 《Optik》2012,123(23):2154-2158
Modulation instability of an intense right-hand elliptically polarized laser beam propagating through an electron-positron plasma is investigated by a new method. The nonlinear dispersion relation, in which the relativistic and ponderomotive nonlinearities are taken into account, is obtained for the laser radiation in electron-positron plasma by the Lorentz transformation. The Karpman equation is generalized to the case of three dimensions with three field components. When the nonlinear frequency shift of the electromagnetic field in plasma is involved, the nonlinear evolution equation for the slowly varying envelope of the laser field is obtained. Thus, modulation instability of the intense laser beam in electron-positron plasma is studied and the temporal growth rate of the instability is derived. The analysis shows that the growth rate of modulation instability is increased significantly near the critical surface in a laser-plasma.  相似文献   

16.
The possibility of creating discharge in laser plasma in an external electric field with quasi-static current generation along the field is discussed. The knowledge of the quasi-static current generation mechanism in laser plasma, associated with the rarefaction shock wave (RSW), allows the determination of the spatial distribution of these currents during laser irradiation of a planar target. Having included the (planar or cylindrical) target into an external contour, we propose a discharge scheme in laser plasma, where the discharge current increases during the laser pulse.  相似文献   

17.
基于激光等离子体尾波解析模型,分析了毛细管中激光与等离子体相互作用,数值计算了尾波中基本物理量。计算结果表明:毛细管等离子体尾波幅度与毛细管半径有关,在较小的毛细管中尾波幅度更大。在相同的激光与等离子体参数情况下,与无界等离子体尾波相比较,毛细管等离子体尾波中电子空泡纵向尺度、电场强度峰值、角向自生磁场强度峰值提高了60%,这些特征都表明毛细管等离子体尾波更有利于电子加速。  相似文献   

18.
激光与固体靶面烧蚀等离子体的能量耦合计算   总被引:1,自引:0,他引:1  
 强激光辐照下固体靶表面迅速汽化产生靶蒸气等离子体,激光穿过等离子体区到达固体靶表面的过程就是激光束与等离子体的能量耦合与交换过程。采用具有五阶精度的WENO差分格式和简易等离子体状态方程模型对激光与等离子体相互作用的复杂物理过程进行了数值计算,分析了激光束能量在等离子体区中的吸收、屏蔽效应等动态耦合规律以及激光支持等离子体前驱冲击波传播。数值模拟结果表明:激光能量是支持靶面等离子体运动的唯一原因,能量屏蔽效应对激光与等离子体能量耦合有很大影响,通过控制激光脉冲宽度,可以合理调节屏蔽效应的影响。  相似文献   

19.
Dynamics of erosion laser plasma in vacuum and generation of magnetic field by moving plasma (in particular, in the presence of external static magnetic field oriented along the direction of plasma motion) are experimentally studied. Radial confinement of the spread of plasma, a decrease in the electrification of target upon plasma formation, and an increase in the induction of the plasma magnetic field by a factor of 10–15 are revealed at an induction of the external magnetic field of about 0.35 T. Dependences of the induction of the plasma magnetic field on the power density of the laser radiation are determined for the above regimes.  相似文献   

20.
为了评估利用发散磁场构型双电层效应的紧凑式螺旋波等离子体推力器的离子加速效果,探索了一种双向偏振态激光诱导荧光测量方法来对螺旋波等离子体源近出口端的离子速度分布函数进行测量。实验中采用Ar作为螺旋波等离子体源工质,中心波长为611.662 nm的激光以轴向方式注入等离子体,以激励一价Ar离子获得波长为461.086 nm的诱导荧光光谱。为了消除磁化等离子体中逆塞曼效应对激光诱导荧光光谱带来的分裂影响,通过四分之一波片将入射激光分别调制为左旋和右旋圆偏振态,并对其诱导光谱进行了分别测量,结果发现不同磁场强度下两次测量结果的偏移值与理论高度吻合,证明了双向偏振态激光诱导荧光测量方法的理论可行性。进一步,采用高斯型滤波器反卷积算法从测量光谱中去除自然展宽和能量饱和效应,再通过对两次相反偏振态测量结果进行平移处理消除逆塞曼效应,从而分离得到实际的多普勒效应。测量了射频能量600 W,不同轴向位置、磁场大小以及气体压力下的螺旋波Ar等离子体激光诱导荧光光谱,结果表明在该实验条件下离子并没有因双电层效应而达到期望值的加速效果,离子速度的形成可能只是一种磁约束作用下的双极电场所导致,并不能产生好的推力性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号