首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of isocratic separations of 11 pollutant phenols (PP) using monolithic (Chromolith RP-18e) and conventional reversed-phase 5 microm (Luna and Purospher C18) and 4 microm (Synergi C12) particulate size columns, selected from high purity silica materials, has been compared. The separations have been optimized based on a previously optimized separation in which a reversed-phase C18 Luna column and acetonitrile as organic modifier were used, allowing the separation of all phenols tested in 23 min. The optimization process was carried out for each column by studying the effect of the mobile phase (acetonitrile as organic modifier, pH, flow-rate) on phenols separation. Under the optimized separation conditions, all phenols were separated in less than 23 min for all columns tested. Asymmetry factors were further evaluated and used to estimate column efficiency using the Dorsey-Foley equation. The efficiency and asymmetry factors were lower for Chromolith than for Purospher and Luna columns respectively. The Chromolith column was finally selected, due to its lower flow resistance, analysis time and good efficiency and asymmetry factors. The PPs separation was achieved in 3 min. The asymmetry factors were in the range 0.9-1.5 using 50mM acetate buffer (pH = 5.25)-ACN (64:36, v/v) as mobile phase, T=45 degrees C and 4.0 ml min(-1) flow-rate.  相似文献   

2.
Comprehensive two-dimensional (2D) HPLC in the reversed-phase liquid chromatography (RPLC) mode using C18 silica monolith columns at first dimension (1st-D) (10 cm x 4.6mm I.D.) and second dimension (2nd-D) (5 cm x 4.6mm I.D.) was carried out successfully. A mixture of water and tetrahydrofuran (THF) was used as a mobile phase in the 1st-D separation, and a mixture of water and methanol (CH3OH) in the 2nd-D separation. Sample fractions from 1st-D column were directly loaded into an injection loop of the 2nd-D HPLC equipped with two injector valves for one column. The fractionation time at the 1st-D that was equal to the separation time at the 2nd-D was 45 or 60s. Total peak capacity up to 900 was obtained in about 60 min for the isocratic mode separation of aromatic compounds in this system. Gradient elution mode applied to both 1st-D and 2nd-D separations resulted in shorter separation time and better separation efficiencies than the isocratic mode. It was demonstrated that 2D-HPLC systems employing popular C18 stationary phases with different organic modifiers in mobile phases for each dimension could produce large peak capacity. The different selectivities were provided by the difference in polar interactions between a solute and the organic modifier existing in the stationary phase.  相似文献   

3.
An orthogonal two-dimensional liquid chromatographic (2D-LC) system was developed by using a vacuum-evaporation loop-type valve interface. Normal-phase liquid chromatography (NPLC) with a bonded CN phase column was used as the first dimension, and reversed-phase liquid chromatography (RPLC) with a C(18) column was used as the second dimension. All the solvents in the loop of the interface were evaporated at 90 degrees C under vacuum conditions, leaving the analytes on the inner wall of the loop. The mobile phase of the second dimension dissolved the analytes in the loop and injected them onto the secondary column, allowing an on-line solvent exchange of a selected fraction from the first dimension to the second dimension. The chromatographic resolution of analytes on the two dimensions was maintained at their optimal condition. Sample loss due to evaporation in the interface was observed that depended on the boiling point of the compound. Separation of sixteen polycyclic aromatic hydrocarbon mixtures and a traditional Chinese medicine Angelica dahurica was demonstrated.  相似文献   

4.
We explored chromatographic conditions to obtain high resolution in protein separations by ion-exchange chromatography (IEC) on a nonporous anion-exchange resin of 2.5 microm in particle diameter. We studied the effects of gradient time (steepness of salt concentration gradient), flow-rate and column length on resolution in much wider ranges than had been studied before. It was found that two distinct conditions exist that provide high resolution. The first is a condition which has widely been employed in current high-performance IEC, namely, a combination of short gradient time, high flow-rate and comparatively short column. Separation times are usually 5-30 min, and even more rapid (1-2 min) separations are possible. The second is the condition which has rarely been employed in high-performance IEC. It is a combination of long gradient time, low flow-rate and long column. Although it takes several hours for one separation, very high resolution is attainable.  相似文献   

5.
Two-dimensional high performance liquid chromatography is a useful tool for proteome analysis, providing a greater peak capacity than single-dimensional LC. The most popular 2D-HPLC approach used today for proteomic research combines strong cation exchange and reversed-phase HPLC. We have evaluated an alternative mode for 2D-HPLC of peptides, employing reversed-phase columns in both separation dimensions. The orthogonality of 2D separation was investigated for selected types of RP stationary phases, ion-pairing agents and mobile phase pH. The pH appears to have the most significant impact on the RP-LC separation selectivity; the greatest orthogonality was achieved for the system with C18 columns using pH 10 in the first and pH 2.6 in the second LC dimension. Separation was performed in off-line mode with partial fraction evaporation. The achievable peak capacity in RP-RP-HPLC and overall performance compares favorably to SCX-RP-HPLC and holds promise for proteomic analysis.  相似文献   

6.
Column peak capacity was utilized as a measure of column efficiency for gradient elution conditions. Peak capacity was evaluated experimentally for reversed-phase (RP) and cation-exchange high-performance liquid chromatography (HPLC) columns, and compared to the values predicted from RP-HPLC gradient theory. The model was found to be useful for the prediction of peak capacity and productivity in single- and two-dimensional (2D) chromatography. Both theoretical prediction and experimental data suggest that the number of peaks separated in HPLC reaches an upper limit, despite using highly efficient columns or very shallow gradients. The practical peak capacity value is about several hundred for state-of-the-art RP-HPLC columns. Doubling the column length (efficiency) improves the peak capacity by only 40%, and proportionally increases both the separation time and the backpressure. Similarly, extremely shallow gradients have a positive effect on the peak capacity, but analysis becomes unacceptably long. The model predicts that a 2D-HPLC peak capacity of 15,000 can be achieved in 8 h using multiple fraction collection in the first dimension followed by fast RP-HPLC gradients employing short, but efficient columns in the second dimension.  相似文献   

7.
Many samples contain compounds with various numbers of two or more regular structural groups. Such "multidimensional" samples (according to the Giddings' notation) are best separated in orthogonal chromatographic systems with different selectivities for the individual repeat structural groups, described by separation factors. Correlations between the repeat group selectivities characterize the degree of orthogonality and suitability of chromatographic systems for two-dimensional (2D) separations of two-dimensional samples. The range of the structural units in that can be resolved in a given time can be predicted on the basis of a model describing the repeat group selectivity in the first- and second-dimension systems. Two-dimensional liquid chromatographic system combining reversed-phase (RP) mode in the first dimension and normal-phase (NP) mode in the second dimension were studied with respect to the possibilities of in-line fraction transfer between the two modes. Hydrophilic interaction liquid chromatography (HILIC) with an aminopropyl silica column (APS) is more resistant than classical non-aqueous NP systems against adsorbent desactivation with aqueous solvents transferred in the fractions from the first, RP dimension to the second dimension. Hence, HILIC is useful as a second-dimension separation system for comprehensive RP-NP LCxLC. A comprehensive 2D RP-NP HPLC method was developed for comprehensive 2D separation of ethylene oxide-propylene oxide (EO-PO) (co)oligomers. The first-dimension RP system employed a 120 min gradient of acetonitrile in water on a C18 microbore column at the flow-rate of 10 microL/min. In the second dimension, isocratic HILIC NP with ethanol-dichloromethane-water mobile phase on an aminopropyl silica column at 0.5 mL/min was used. Ten microliter fractions were transferred from the RP to the HILIC NP system at 1 min switching valve cycle frequency.  相似文献   

8.
Ion-exclusion chromatography is a well established technique for the analysis of achiral ionic species, but it has rarely been applied to chiral analytes. In this paper enantioselective ion-exclusion separations were developed on two commercially available HPLC phases: Chirobiotic TAG, based on teicoplanin aglycone, and Opticrown RCA (+), based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Chirobiotic TAG columns have a carboxylic acid group on the chiral ligand, which can be partially ionized to exclude anionic analytes by ionic repulsion. Under acidic conditions Opticrown columns have a cationic sublayer generated from the aminopropyl base silica that excludes cationic analytes. Both columns demonstrate a large dependence of efficiency on flow-rate, with the highest efficiencies at 0.1 ml/min on a 4.6 mm inner diameter column.  相似文献   

9.
A two-dimensional ion chromatography (2D-IC) approach has been developed which provides greater resolution of complex samples than is possible currently using a single column. Two columns containing different stationary phases are connected via a tee-piece, which enables an additional eluent flow and independent control of eluent concentration on each column. The resultant mixed eluent flow at the tee-piece can be varied to produce a different eluent concentration on the second column. This allows analytes strongly retained on the first column to be separated rapidly on the second column, whilst maintaining a highly efficient, well resolved separation of analytes retained weakly on the first column. A group of 18 inorganic anions has been separated to demonstrate the utility of this approach and the proposed 2D-IC method provided separation of this mixture with resolution of all analytes greater than 1.3. Careful optimisation of the eluent profiles on both columns resulted in run times of less than 28 min, including re-equilibration. Separations were performed using isocratic or gradient elution on the first column, with an isocratic separation being used on the second column. Switching of the analytes onto the second column was performed using a gradient pulse of concentrated eluent to quickly elute strongly retained analytes from the first column onto the second column. The separations were highly repeatable (RSD of 0.01–0.12% for retention times and 0.08–2.9% for peak areas) and efficient (typically 8000–260,000 plates). Detection limits were 3–80 ppb.  相似文献   

10.
Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.  相似文献   

11.
In this work, monolithic silica columns with the C4, C8, and C18 chemistry and having various macropore diameters and two different mesopore diameters are studied to access the differences in the column efficiency under isocratic elution conditions and the resolution of selected peptide pairs under reversed-phase gradient elution conditions for the separation of peptides and proteins. The columns with the pore structural characteristics that provided the most efficient separations are then employed to optimize the conditions of a gradient separation of a model mixture of peptides and proteins based on surface chemistry, gradient time, volumetric flow rate, and acetonitrile concentration. Both the mesopore and macropore diameters of the monolithic column are decisive for the column efficiency. As the diameter of the through-pores decreases, the column efficiency increases. The large set of mesopores studied with a nominal diameter of approximately 25 nm provided the most efficient column performance. The efficiency of the monolithic silica columns increase with decreasing n-alkyl chain length in the sequence of C18相似文献   

12.
A method utilizing capillary-channeled polymer (C-CP) fibers as stationary phases in high-performance liquid chromatographic separations has been investigated. Polymeric fibers of differing backbones (polypropylene and polyester) having nominal diameters of approximately 50 and approximately 35 microm and a channeled structure on their periphery were packed into stainless steel tubing (305 x 4.6 mm I.D.) for use in reversed-phase separations of various mixtures. The fibers have eight channels running continuously along the axis which exhibit very high surface activity. As such, solvent transport is affected through the channels through wicking action. Bundles of 1000-3000 fibers are loaded co-linearly into the tubing, providing flow channels extending the entire length of the columns. As a result, backing pressures are significantly lowered (approximately 50% reduction) in comparison to packed-sphere columns. In addition, the capital costs of the fiber material (< US$0.25 per column) are very attractive. Flow-rates of up to 5 ml/min can be used to achieve near baseline separation of related compounds in reasonable run times, indicating very fast mobile phase mass transfer (C-terms). The polymer stationary phases demonstrate high selectivity for a wide variety of analytes with gradient elution employed successfully in many instances. Specifically, separations of three polyaromatic hydrocarbons (benzo[a]pyrene, chrysene, pyrene), mixtures of both organic and inorganic lead compounds [chlorotriethyllead, chlorotriphenyllead, lead nitrate, lead(II) phthalocyanine], and a lipid standard of triglycerides were accomplished on the polymeric stationary phases. Other species of biological interest, including groups of aliphatic and aromatic amino acids have also been effectively separated. The reversed-phase nature of the fiber surfaces is supported through atomic force microscopy measurements using hydrophilic and hydrophobic functionalized polystyrene beads as the probe tips. Separations of the various analytes demonstrate the feasibility of utilizing C-CP fibers as stationary phases in reversed-phase LC. It is envisioned that columns of this nature would be particularly useful in prep-scale separations as well as for immobilization matrices for organic constituents in aqueous environments.  相似文献   

13.
The interactive modes of High Performance Liquid Chromatography (HPLC) of proteins provide a platform for the construction of a multidimensional HPLC system coupled to mass spectrometry. We present a system composed of both anion and cation exchanger columns, in the first dimension, and n‐octadecyl bonded 1.5 μm nonporous silica columns in the second dimension. Both columns are operated under gradient conditions. A system suitability test with standard proteins showed that the total analysis can be performed within about 20 minutes. The fractions taken from the ion exchanger column are directly analyzed within one minute on the reversed phase column at a high flow rate. Two reversed phase columns are applied and operated alternatively: while the first column performs the separation within one minute, the analytes leaving the first dimension are enriched in an on‐column focusing mode on top of the second column. The sample clean‐up and enrichment is performed on a novel type of restricted access cation exchanger column with internal sulfonic acid groups and external diol groups. The columns exhibit a molecular weight exclusion limit for globular proteins of about 15 kDa. Our next studies will be directed towards the analysis of proteins and peptides from extracts of fibroblasts.  相似文献   

14.
We explored chromatographic conditions to obtain high resolution in protein separations by ion-exchange chromatography (IEC) on a macroporous anion-exchange resin of 10 microm in particle diameter. We studied effects of flow-rate, gradient time (steepness of salt concentration gradient) and column length on resolution in wide ranges. It was found that very high resolutions are attainable at long gradient times with long columns. The resolution continuously became higher as the gradient time and the column length became longer except in some special cases. The dependence of resolution on gradient time was particularly great when the column was long and the gradient time for the change of 0-0.5 M NaCl was longer than 2 h. On the other hand, the effect of flow-rate on resolution was very small. Although the separations at long gradient times with long columns have not been popular in high-performance IEC and it takes several hours for one separation, such separations should be advantageous when very high resolutions are required like in proteomics research.  相似文献   

15.
二维液相色谱接口的改进及其在蛋白质组学研究中的应用   总被引:1,自引:0,他引:1  
李笃信  张凌怡  李彤  杜一平  张维冰 《色谱》2010,28(2):163-167
随着蛋白质组学、本草物质组学等组学概念的提出,所需分析的样品的成分越来越复杂,因此具有强大分离能力的多维液相色谱技术受到人们越来越多的关注。二维液相色谱中第二维的分离性能和速度是整个分离系统性能的关键。基于捕集柱模式,我们采用经特殊设计的流路系统,使得双捕集柱型接口具有预分离的功能。样品从第一维流出以后被富集在捕集柱1的柱头,经过脱盐后,正冲捕集柱,捕集柱1与第二维色谱柱联用对富集的样品进行分离,增加了第二维分离效率。当捕集柱上的样品全部被洗脱到第二维色谱柱上时,捕集柱2已经完成对第一维洗脱液中样品的捕集和脱盐,此时将阀进行切换,捕集柱2与第二维色谱柱直接相连进行洗脱。循环切换捕集柱1和捕集柱2,维持较高的阀切换频率,实现了第二维色谱柱的连续洗脱。因此保证了第二维分离具有较快速度,同时具有较高的分离效率。使用35 mm长捕集柱和十通阀为接口,以弱阴离子交换(WAX)色谱为第一维分离模式,以反相(RP)色谱为第二维分离模式,构建了WAX-RP二维液相色谱系统(2D-LC system)。以小鼠血清为样品对系统进行了初步评价。色谱流出曲线出现了明显的界面现象,这是由于捕集柱流动相中含有的较多盐分流出时的背景吸收造成的。同时,由于界面两侧的流动相黏度不同产生了黏性指进(VF)现象。当第二维色谱柱长度为50 mm时,理论上可将第二维分离效能提高70%。该接口可以应用于多种二维液相色谱模式,适用于蛋白质组学和本草物质组学研究中对于复杂样品的分离分析。  相似文献   

16.
用内径为0.53 mm的填充毛细管正相液相色谱为第一维, 用4.6 mm(i.d.)×50 mm RP-18e整体柱反相色谱为第二维, 建立了定量环-阀切换接口的全二维液相色谱系统(NPLC×RPLC). 第一维色谱分离洗脱出的组分交替存储在十通阀上的两个定量环中, 同时定量环中前一个组分被转移到第二维进行反相分离. 因为第一维的流动相流量仅是第二维的1/500, 自然解决了流动相兼容问题. 采用芳香族化合物的混合物和中药丹参正己烷提取液对该全二维液相系统的分离能力进行了评价.  相似文献   

17.
Continuous-bed columns containing sol-gel bonded 3 microm silica particles with mixed-mode octadecyl and propylsulfonic acid functional groups (ODS/SCX) were prepared by first packing the ODS/SCX particles into a fused-silica capillary, then filling the packed capillary with a siliceous sol-gel, curing the sol-gel, and finally drying the column with supercritical carbon dioxide. The performance of the sol-gel bonded ODS/SCX columns was evaluated for capillary electrochromatography using acetonitrile aqueous mobile phase containing phosphate buffer. The columns were mechanically strong and permeable. Both EOF velocity and current increased linearly with elevation of the applied electric field strength. The EOF velocity was high at low pH and nearly constant over a range of pH 2-9. Higher buffer concentration resulted in higher current and lower EOF velocity. The acetonitrile content had no significant effect on the EOF. Without thermosetting the column, no bubble formation was noticed with currents up to 2.5 microA. The minimum plate height of a 25/34 cm x 75 microm I.D. sol-gel bonded 3 microm ODS/SCX column was 5.7 microm (1.75 x 10(5) plates per meter) at an optimum EOF velocity of 0.92 mm s(-1). Mixtures of test aromatic compounds and aromatic hydrocarbon homologues gave symmetrical peaks when using a low pH mobile phase. The retention and elution order of aromatic compounds represented a typical reversed-phase separation mechanism similar to conventional ODS columns. The run-to-run and column-to-column retention factor reproducibility was better than 2.5% and 8.0% RSD, respectively.  相似文献   

18.
Fatty acid methyl esters from various fats and oils were separated by comprehensive two-dimensional supercritical fluid chromatography with conventional packed columns and FID detection. The first dimension was a silica gel column and the second dimension was an ODS column. This combination was largely orthogonal for the separation of fatty acid methyl esters. The first dimension separations were primarily based on the number of double bonds while the second dimension separations were based on the chain length. The highly-ordered chromatograms and improved resolution allowed the easy detection and identification of minor components. Although the first dimension separations were performed under isobaric conditions where the peak width increased in proportion to the retention, the programming of the sampling duration allowed us to maintain the optimum re-injection frequency (3–4 times) per peak into the second dimension and so to minimize the total analysis time without deteriorating the resolution.  相似文献   

19.
Correlations between the separation selectivity in aqueous and non-aqueous reversed-phase systems and in normal-phase LC systems were investigated for samples containing different numbers of two repeat structural elements. Such samples are best separated in "orthogonal" two-dimensional chromatographic systems, showing selectivity for one type of the repeat structural element only in the first dimension and for the other structural element only in the second dimension. The number of resolved compounds improves as the degree of orthogonality of the separation systems increases with decreasing correlation between the selectivities for the sample structural distribution in the two dimensions. Orthogonal systems with non-correlated selectivities for each repeat structural element provide the highest number of separated peaks and regular arrangement of the peaks over the two-dimensional retention space according to the individual structural element distribution and the best use of the available peak capacity. Fully orthogonal systems are difficult to find in practice. Partially orthogonal system with correlated selectivities for one structural type distribution, but with one system non-distinguishing the distribution for the other structural element are still useful for the two-dimensional separations. The correlations between the selectivities for repeat regular structural increments were employed to evaluate the suitability of phase systems for two-dimensional HPLC separations. The selectivity correlation in various reversed-phase and normal-phase systems was evaluated for two sample types: (1) Various RP columns show significantly inversely correlated selectivities for acyl lengths and numbers of double bonds distribution, but the differences in the double bond selectivity can be used for practical separations of triacylglycerols with the same equivalent carbon numbers. (2) Synthetic EO-PO block (co)oligomers with two-dimensional distribution of oxyethylene and oxypropylene monomer units were separated according to the two distribution types using on-line two-dimensional reversed-phase-normal-phase LC with a C18 column in the first dimension and an aminopropyl silica column in the second dimension.  相似文献   

20.
In this study, 1-D and 2-D liquid chromatographic systems, namely, conventional HPLC, UPLC, HPLC x HPLC and HPLC x UPLC systems were developed and evaluated for the separation of phenolic acids in wine and juices. In the LC x LC studies, the first dimension separation was based on RPLC and the second dimension was performed with ion-pair chromatography. Three different columns, namely two short columns packed with either 2.5 or 1.7 microm particles and a monolithic column, were tested for the fast second dimension separation. The best results were obtained when the monolithic column was applied for the second dimension separation. The peak capacities for comprehensive 2-D systems varied from 330 to 616.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号