首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
采用耦合了双温度模型的分子动力学方法对飞秒激光烧蚀金箔的传热过程进行了模拟研究,考虑了非傅里叶效应,探究了不同激光能流密度下等离子体羽流的屏蔽作用.根据密度分布将激光烧蚀过程中的金箔划分为过热液体层、熔融液体层和固体层,并比较了不同激光能量密度下过热液体层表面发生的相爆炸沸腾现象以及表面温度的变化情况.结果表明,随着激光能量密度的增大,等离子体的屏蔽比例几乎呈线性增大.在激光的烧蚀过程中,金箔的上表面最先经历液体层以及过热液体层,并且随着时间的推移,液体层和过热液体层逐渐向金箔底部移动.过热液体层发生体积移除的相爆炸沸腾是金箔烧蚀的主要方式,随着激光能量的增大,爆炸沸腾发生的时间提前,并且结束的时间相应延后,持续时间变长.  相似文献   

2.
Complex shaped nanoparticles featuring structural or surface chemical patchiness are of special interest in both fundamental and applied research areas. This study reports the preparation and optical properties of gold/silica “mushroom” nanoparticles, where a gold particle is only partially covered by the silica cap. The synthetic approach allows precise control over the particle structure. The interfacial preparation method relies on partially embedding the gold particles in a polystyrene layer that masks the immersed part of the gold particle during silica shell growth from an aqueous solution. By adjusting sacrificial polystyrene film thickness and silica growth time, precise control over the coverage and cap thickness can be achieved. Correlative electron microscopy and single particle scattering spectroscopy measurements underline the high precision and reproducibility of the method. The good agreement between the measured and simulated single particle spectra supported by near‐field calculations indicates that the observed changes in the dipolar plasmon resonance are influenced by the extent of coverage of the gold core by the silica cap. The straightforward methods readily available for gold and silica surface modification using range of different (bio)molecules make these well‐defined nanoscale objects excellent candidates to study fundamental processes of programmed self‐assembly or application as theranostic agents.  相似文献   

3.
姜洪源  任玉坤  陶冶 《中国物理 B》2011,20(5):57701-057701
Microspheres coated with a perfectly conductive surface have many advantages in the applications of biosensors and micro-electromechanical systems.Polystyrene microspheres with the diameter of 10 μm were coated with a 50 nmthick gold layer using an electroless gold plating approach.Dielectrophoresis(DEP) for bare microspheres and shelled microspheres was theoretically analysed and the real part of the Clausius-Mossotti factor was calculated for the two kinds of microspheres.The experiments on the dielectrophoretic characterisation of the uncoated polystyrene microspheres and gold coated polystyrene microspheres(GCPMs) were carried out.Experimental results showed that the gold coated polystyrene microspheres were only acted by a positive dielectrophoretic force when the frequency was below 40M Hz,while the uncoated polystyrene microspheres were governed by a negative dielectrophoretic force in this frequency range.The gold coated polystyrene microspheres were exploited to form the microwire automatically according to their stable dielectrophoretic and electric characterisations.  相似文献   

4.
A simple synthetic route based on nanosphere lithography has been developed in order to design a large-scale nanoarray for specific control of protein anchoring. This technique based on two-dimensional (2D) colloidal crystals composed of polystyrene spheres allows the easy and inexpensive fabrication of large arrays (up to several centimeters) by reducing the cost. A silicon wafer coated with a thin adhesion layer of chromium (15 nm) and a layer of gold (50 nm) is used as a substrate. PS spheres are deposited on the gold surface using the floating-transferring technique. The PS spheres were then functionalized with PEG-biotin and the defects by self-assembly monolayer (SAM) PEG to prevent unspecific adsorption. Using epifluorescence microscopy, we show that after immersion of sample on target protein (avidin and anti-avidin) solution, the latter are specifically located on polystyrene spheres. Thus, these results are meaningful for exploration of devices based on a large-scale nanoarray of PS spheres and can be used for detection of target proteins or simply to pattern a surface with specific proteins.  相似文献   

5.
姜洪源  任玉坤  陶冶 《物理学报》2011,60(1):10701-010701
微粒子的电动旋转操控是表征分散系中微粒子介电特性的有效方法.低雷诺数微系统中,以Maxwell-Wagner极化理论为基础,进行了转矩作用下的微粒子电动旋转机理研究,推导了此机理作用下微粒子电动旋转峰值速度所对应的特征频率,分析了弛豫时间对粒子旋转方向的影响,对转矩作用下的微粒子电动旋转速度进行仿真;以双电层理论为基础,对电渗流导致的微粒子电动旋转机理进行定性分析,提出具有金修饰的粒子表面更适合电渗流作用下的电动旋转研究.分别以羧基修饰的聚苯乙烯微球以及表面被金修饰的聚苯乙烯微球为操控对象,进行电动旋转实 关键词: 微系统 电动旋转 转矩 电渗流  相似文献   

6.
Sharp, Teichroeb and Forrest [J.S. Sharp, J.H. Teichroeb, J.A. Forrest, Eur. Phys. J. E 15, 473 (2004)] recently published a viscoelastic contact mechanics analysis of the embedment of gold nanospheres into a polystyrene (PS) surface. In the present comment, we investigate the viscoelastic response of the surface and conclude that the embedment experiments do not support the hypothesis of a liquid surface layer of sufficiently reduced "rheological temperature" to explain reports of very large reductions in the glass temperature of freely standing ultrathin polystyrene films. We also report some errors and discrepancies in the paper under comment that resulted in an inability to reproduce the reported calculations. We present our findings of error in a spirit of clarifying the problem of embedment of spheres into surfaces and in order that others can understand why they may not reproduce the results reported by Sharp, Teichroeb and Forrest. In the comment, we also examine the effects of the magnitude of the forces that result from the polymer surface-nanosphere particle interactions on the viscoelastic properties deduced from the embedment data and we provide a comparison of apparent surface or "rheological" temperature vs. experimental temperature that indicates further work needs to be performed to fully understand the surface embedment experiments. Finally, we comment that the nanosphere embedment measurements have potential as a powerful tool to determine surface viscoelastic properties.  相似文献   

7.
A model of the equilibrium state of a drop pending from the horizontal plane is considered. We take into account the work necessary for the formation of the intermediate layer between the liquid and gas phases and its elastic properties. The theorem of existence of the equilibrium surface of the drop is proven using the variational principle taking into account the flexibility of the intermediate layer.  相似文献   

8.
将平均晶粒尺寸为4.6 nm的金粒子通过静电作用粘附于聚苯乙烯(PS)微球表面用于化学镀,化学镀金后PS表面的金沉积层几乎达到完全包覆,厚度70~90 nm;在Au/PS表面进行化学镀银,沉积的银颗粒堆积紧密,颗粒大小较先前沉积的金颗粒大,镀覆层厚度增厚至200~400 nm;模板去除后,获得了完全自支撑的Au40Ag60空心微球结构的圆柱状泡沫材料。制备的金银合金泡沫由直径约10 m的空心球壳组成,圆柱体直径约5 mm,密度约1.2 g/cm3。  相似文献   

9.
将平均晶粒尺寸为4.6 nm的金粒子通过静电作用粘附于聚苯乙烯(PS)微球表面用于化学镀,化学镀金后PS表面的金沉积层几乎达到完全包覆,厚度70~90 nm;在Au/PS表面进行化学镀银,沉积的银颗粒堆积紧密,颗粒大小较先前沉积的金颗粒大,镀覆层厚度增厚至200~400 nm;模板去除后,获得了完全自支撑的Au40Ag60空心微球结构的圆柱状泡沫材料。制备的金银合金泡沫由直径约10 m的空心球壳组成,圆柱体直径约5 mm,密度约1.2 g/cm3。  相似文献   

10.
内置调制层型光纤表面等离子体波共振传感器研究   总被引:2,自引:1,他引:1  
孙晓明  曾捷  张倩昀  穆昊  周雅斌 《光学学报》2013,33(1):128002-250
研究了一种基于内置调制层结构的光纤表面等离子体波共振(SPR)传感器。通过在金膜与纤芯的内侧增覆具有不同厚度和属性的光学透明薄膜作为内调制层,构成了性能独特的光电复合薄膜,起到调节倏逝波矢量和金膜表面等离子体振荡波矢量的双重作用,进而控制共振效应,为调节灵敏度提供依据。采用时域有限差分方法对内置调制层结构光纤SPR共振激励模型属性进行数值仿真。在此基础上,研制了用于液体折射率测量的内置调制层型光纤SPR传感探针。实验结果表明,该传感器在1.335~1.392折射率范围内,随着待测液体折射率的增大,SPR共振光谱向长波方向偏移,且灵敏度达到2263.1nm/RIU,与基于纤芯-金膜-环境介质三层结构的常规光纤SPR传感器相比提高一倍,能够更好地满足环境折射率检测的需求。  相似文献   

11.
Sharp, Teichroeb and Forrest [J.S. Sharp, J.H. Teichroeb, J.A. Forrest, Eur. Phys. J. E 15, 473 (2004)] recently published a viscoelastic contact mechanics analysis of the embedment of gold nanospheres into a polystyrene (PS) surface. In the present comment, we investigate the viscoelastic response of the surface and conclude that the embedment experiments do not support the hypothesis of a liquid surface layer of sufficiently reduced “rheological temperature” to explain reports of very large reductions in the glass temperature of freely standing ultrathin polystyrene films. We also report some errors and discrepancies in the paper under comment that resulted in an inability to reproduce the reported calculations. We present our findings of error in a spirit of clarifying the problem of embedment of spheres into surfaces and in order that others can understand why they may not reproduce the results reported by Sharp, Teichroeb and Forrest. In the comment, we also examine the effects of the magnitude of the forces that result from the polymer surface-nanosphere particle interactions on the viscoelastic properties deduced from the embedment data and we provide a comparison of apparent surface or “rheological” temperature vs. experimental temperature that indicates further work needs to be performed to fully understand the surface embedment experiments. Finally, we comment that the nanosphere embedment measurements have potential as a powerful tool to determine surface viscoelastic properties.  相似文献   

12.
R AZIMIRAD  S SAFA 《Pramana》2016,86(3):653-660
A dual layer of dip-coated TiO2 film (top layer) and electrospun polystyrene (bottom layer) was coated on stainless steel (SS) substrates. The morphological and structural studies were performed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their hydrophobicity and corrosion resistance were also investigated using contact angle (CA) and electrochemical corrosion tests in acidic and salt solutions, respectively. Contact angle results showed that the naturally hydrophilic TiO2/SS sample (CA ~ 66°) turned into a superhydrophic surface (CA ~ 148°) when it was covered by polystyrene fibres (PS /TiO2 /SS). This observation can be attributed to the intrinsic hydrophobicity of organic polystyrene fibres (due to their low surface energy) and also to the existence of trapped air bubbles between fibres. Electrochemical corrosion tests showed that the corrosion rate was substantially decreased by using a protective bilayer (PS /TiO2) from 33 to 0.39 mV /y for bare SS sample and from 0.01 to 0.003 mV /y for PS /TiO2 /SS sample in 1 M salt and acidic solutions, respectively. The superhydrophobic protective layer forms an obstacle against ionic exchange interactions. Therefore, it slows down the breaking of the surface oxidic layer on the metal substrate and prevents the metallic surface underneath from further corrosion.  相似文献   

13.
The previously developed model of an intermediate phase of ice with a liquid system of hydrogen bonds has been applied to describe a quasiliquid surface layer. This approach leads to a two-component model of a quasiliquid ice surface layer. In the outer part of the layer, both the proton and oxygen sublattices are melted, constituting water or the Thomson sublayer. In the inner part of the layer, only the proton sublattice is melted, whereas the oxygen sublattice holds its structure (the liquid state of the system of hydrogen bonds or the Faraday sublayer). The proposed model gives correct-in-magnitude estimates of various physical characteristics of the layer, explains the contradiction between the Faraday and Thomson hypotheses, and is consistent with recent experimental results and numerical studies.  相似文献   

14.
等离子体增感太阳能电池中,层层自组装金纳米粒子的表面等离子体共振能产生光电电流,金纳米粒子层的光电转换效率随表面等离子体共振强度的提升而增加。等离子体增感太阳能电池初步试验光电转换效能为0.75%。利用模型仿真电荷分离的现象、光电电流的产生,以及表面等离子体共振和光电电流产生之间的关系来解释实验结果。在未来,通过优化等离子体增感太阳能电池组件,可以进一步提升其转换效率。这在表面等离子体激活太阳能电池及等离子体太阳能电池领域将有很大应用潜力。  相似文献   

15.
The generation of ultrasonic cavitation in a thin liquid layer trapped between a large radiating surface and a hard reflector and bounded laterally by a gas–liquid interface is investigated. The theoretical analysis predicts that a large amplification of the acoustical pressure is obtained with this configuration. Experiments are conducted by driving the layer with horn-type transducers having a large emitting surface. Ultrasonic cavitation is obtained in a broad frequency range at low input intensity due to the amplification effect. Erosion tests on metallic foils demonstrate the existence of a region of intense cavitation activity which can be localised by controlling the input intensity.  相似文献   

16.
Dispersing nanospheres on a large glass substrate is the key to fabricate noble metal nanostructures for localized surface plasmon resonance through dispersed nanosphere lithography. This article reports that by modifying the glass surface with low dose ion implantation and successively dip coating the surface with poly(diallyldimethyl ammonium chloride) (PDDA), polystyrene or silica nanospheres can be dispersed on a large glass substrate. Investigation shows that several kinds of ions, such as silicon, boron, argon, and arsenic, can improve the nanosphere dispersion on glass, attributed to the ion bombardment-caused silicon increment. Ion implantation imposes no surface roughness or optical loss to the glass substrate, thus this method is suitable for localized surface plasmon resonance application. Experiments show silicon ion implantation can best disperse the nanospheres. For the gold nanostructures obtained by obliquely evaporating 30 nm of gold film onto the polystyrene nanospheres, which are dispersed on a silicon ion implanted glass substrate, a localized surface plasmon resonance sensitivity of 242 nm/RIU is achieved.  相似文献   

17.
A sensor based on surface plasmon resonance (SPR) of plasmonic crystals fabricated via a colloidal-crystal-assisted templating method is studied. Plasmonic crystals are prepared by depositing a thin gold (Au) layer onto a two-dimensional array of polystyrene spheres self-assembled on a quartz substrate. The enhanced transmission as a result of the SPR of Au plasmonic crystals, which are immersed in different ambient liquids, are measured and compared with that of polystyrene (PS) microsphere templates of different sizes, both before and after removal of Au nanoprisms formed on the quartz substrate through pores among the spheres. It is found that the measured sensitivities exhibit a linear dependence on the refractive index of the surrounding medium and are linked to coupling effects between SPRs on the corrugated Au film and nanoislands. The feasibility of the SPR system in molecular monolayer detection is further demonstrated through a formation of alkanethiolate self-assembled monolayers on the Au film surface, which causes a 4 nm red-shift of the main SPR. PACS  07.07.Df; 73.20.Mf; 78.66.-w; 81.16.Dn  相似文献   

18.
We analyzed the stress-driven mechanism of MBE Si whisker growth. It is shown that the driving force for MBE whisker growth is determined by the relaxation of elastic energy stored in the overgrown layer Ls due to gold intrusion. In this case the supersaturation is determined by the interplay between elastic stresses and surface energy. The latter is considerably decreased due to decoration of the Si surface by gold resulting in formation of thin liquid Si/Au eutectic layer. This suggests that in our case the Si supersaturation is not an independent growth parameter as it is in the chemical vapor deposition growth method. Instead it is determined by stress in the overgrown Si layer. This approach allows us to explain quite well the growth kinetic and the relationship between the radius and the length of the whiskers. The whisker growth in our case can be considered as a stress relaxation mechanism, where the stress relaxation occurs due to transition from the two-dimensional system to the three-dimensional one.  相似文献   

19.
We report the origin of the effect of nanoscale confinement on the local viscosity of entangled polystyrene (PS) films at temperatures far above the glass transition temperature. By using marker x-ray photon correlation spectroscopy with gold nanoparticles embedded in the PS films prepared on solid substrates, we have determined the local viscosity as a function of the distance from the polymer-substrate interface. The results show the impact of a very thin adsorbed layer (~7 nm in thickness) even without specific interactions of the polymer with the substrate, overcoming the effect of a surface mobile layer at the air-polymer interface and thereby resulting in a significant increase in the local viscosity as approaching the substrate interface.  相似文献   

20.
The effects of colloidal-gold layers on the luminescent properties of thin films of Eu(TTFA)3(TTFA=thenoyltrifluoroacetonate) in PMMA (PMMA=poly(methyl methacrylate)) were investigated. Layers of spherical gold nanoparticles (12 nm) were formed by self-assembly on the surface of amino-derivatized glass slides. Eu(TTFA)3-PMMA films were then spin-coated either directly onto the Au metal surfaces or onto spacer layers covering the gold. The luminescence properties were characterized both as a function of the density of Au particles in the colloidal layer, and as a function of the distance between the Au layer and the luminescent film. The distance between the metal and luminescent layers was controlled using polyelectrolyte spacer layers deposited on the colloidal-gold films by a spin-assisted, layer-by-layer (SA-LBL) method. It was found that the colloidal gold layer has a net quenching effect on Eu(TTFA)3 luminescence under all conditions considered in this study. The luminescence intensities and lifetimes decrease with increasing density of Au nanoparticles and with decreasing separation (d) between the luminescent film and the gold layer. The measured luminescence intensity drops more quickly with decreasing distance than one would predict based solely on lifetime data, if one assumes a constant radiative relaxation rate. Fits of the luminescence decay kinetics to a model for non-radiative energy-transfer from Eu(TTFA)3 to the gold layer yields a 1/d2 dependence, where d is the distance from the gold layer to the nearest face of the luminescent film. It is suggested that there is no reasonable physical interpretation of this result within the constraints of the model and, therefore, the interaction between the luminescent and gold layer cannot be explained solely in terms of non-radiative energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号