首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Experimental data obtained previously for the energy-angular distribution of neutrons originating from the fission of 252Cf (spontaneous fission) and 235U (thermal-neutron-induced fission) nuclei are analyzed, the angle being measured with respect to the direction of fission-fragment motion. A regularity common to all independent experiments is revealed: at an angle of about 90°, there exists an excess of neutrons (30% for 252Cf and 60% for 235U) that does not admit explanation within the model of neutron emission from fully accelerated fragments. Two possible explanations of this experimental fact—neutron emission during the acceleration process and the existence of an additional source of neutrons (predominantly, prescission neutrons)—are considered. It is shown that the latter conjecture describes the observed features for both nuclei more adequately. The total yield of prescission neutrons and their energy and angular distributions are determined.  相似文献   

3.
Inclusive4He and4H energy spectra and heavy fragment coincidence correlations have been measured for reactions of 7.31 MeV/u238U with238U and?197Au targets. The H/He production cross sections are in the range 15–26 mb, and their emission spectra are very similar for the two systems. The observed strong kinematic shifts with angle are reproduced in shape and magnitude by Monte Carlo simulations of particle evaporation from projectile-like and target-like fragments, indicating competition between charged particle emission and sequential fission. No evidence is found for high energy charged particle emission associated with ultra-highZ composite systems. Heavy fragment measurements indicate an abundance of quasielastic and deeply inelastic reaction fragments, as well as sequential fission of target and projectile nuclei. For238U nuclei, the fission occurs predominantly in an asymmetric mode, reminiscent of fission at low excitation energy. For238+238U reactions in the vicinity of the grazing angle, the frequency of single sequential fission (with survival of the partner fragment) is twice as large as double sequential fission in which both the target and projectile undergo fission. In238U+197Au reactions, the survival probability of the heavy fragments is even greater. The surprisingly high survival probabilities of high-Z fragments imply a preponderance of very soft collisions in these very-heavy-ion reactions, at least at energies not very far over the Coulomb barrier.  相似文献   

4.
5.
6.
The fission yield data in the 14 MeV energy neutron induced fission of 238U play an important role in decay heat calculations and generation-IV reactor designs. In order to accurately measure fission product yields (FPYs) of 238U induced by 14 MeV neutrons, the cumulative yields of fission products ranging from 92Sr to 147Nd in the 238U(n, f) reaction with a 14.7 MeV neutron were determined using an off-line γ-ray spectrometric technique. The 14.7 MeV quasi-monoenergetic neutron beam was provided by the K-400 D-T neutron generator at China Academy of Engineering Physics (CAEP). Fission products were measured by a low background high purity germanium gamma spectrometer. The neutron flux was obtained from the 93Nb (n, 2n)92mNb reaction, and the mean neutron energy was calculated using the cross-section ratios for the 90Zr(n, 2n)89Zr and 93Nb(n, 2n)92mNb reactions. With a series of corrections, high precision cumulative yields of 20 fission products were obtained. Our FPYs for the 238U(n, f) reaction at 14.7 MeV were compared with the existing experimental nuclear reaction data and evaluated nuclear data, respectively. The results will be helpful in the design of a generation-IV reactor and the construction of evaluated fission yield databases.  相似文献   

7.
The alpha particle spectra from ternary fission of U235 have been investigated in the thermal and the resonance neutron energy regions. The resonance neutrons have been obtained by passing the reactor neutron flux through a boron filter. A silicon surface barrier detector telescope technique for alpha particle detection has been used. In the resonance neutron energy region the ratio f / f has been found to be 1·02 ± 0·2 times the value of f / f in the thermal region. The non-gaussian tail of the LRA energy distribution has been observed.The authors are indebted to Dr. I.Wilhelm, Mrs. M.Pospíilová, Mr. J.vanda for their kindly help in the experimental data handling and to Mr. V.Kvítek for his assistance during the experiment.  相似文献   

8.
Angular distributions of neutrons elastically and inelastically scattered from238U have been measured with a time-of-flight spectrometer at seven incident neutron energies between 1.5 and 5.5 MeV. Inelastic angular distributions for groups of unresolved levels are given for incoming neutron energies of 1.5, 1.9 and 2.3 MeV. The corresponding neutron cross-sections were obtained relative to then-p scattering cross-sections. The average energies and angular distributions of the fission neutrons were extracted from the measured fission neutron spectra at 1.5,1.9 and 2.3 MeV. Cross-section calculations based on a spherical optical model have shown to be inadequate to describe the neutron-nucleus interaction in case of strong nuclear deformation. The experimental reality may be better approached, instead, if the calculations are made using a potential which takes into account the deformation of the target nucleus. Some of the present measurements are interpreted in this theoretical perspective.  相似文献   

9.
For the n+<'235>U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy <ε>(A) and the total average energies E<,γ>(A) removed by γ rays as a function of fission fragment mass are given at incident energies up to 20 MeV. The prompt neutron multiplicity as a function of the fragment mass, ν(A), for neutron-induced fission of <'235>U at different incident neutron energies is calculated. The calculated results are checked with the total average prompt neutron multiplicities ν and compared with the experimental and evaluated data. Some prompt neutron and γ emission mechanisms are discussed.  相似文献   

10.
Electromagnetic fission of238U projectiles at E/A =600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsäcker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragments' charge distribution gives evidence for the excitation of the double giant-dipole resonance in uranium.Communicated by V. Metag  相似文献   

11.
Isomeric yield ratios of 30 fission products in 24 MeV proton-induced fission of238U were measured by the use of the ion-guide isotope separator on-line. The obtained isomeric yield ratios were converted to the angular momenta of primary fission fragments based on the statistical model. The deduced angular momenta were examined from various aspects. It is found that in general the angular momentum continuously increases with the fragment mass number including the region of symmetric mass division. However, there are some exceptions. For Sn isotopes the deduced angular momenta are quite small due to the spherical shape of the nuclear shell configuration. It is also concluded from the consideration of the charge distribution that the angular momentum of fission product scatters considerably within the narrow range of mass division. The dependence of the angular momentum on the available energy of fragments at scission point indicates that the individual fragment possesses a characteristic deformation at scission and/or the deduced angular momentum is seriously affected by the particle excitation after scission.  相似文献   

12.
The folding- and azimuthal-angle and velocity distributions for the238U fission fragments have been measured in reactions with 100, 500, and 1000 A·MeV208Pb. These distributions were used to decompose the fission cross section into its electromagnetic and nuclear components. The fraction of electromagnetic fission was found to be 0.16±0.07, 0.48±0.08, and 0.60±0.04, respectively. The electromagnetic fission cross section as a function of the208Pb nucleus energy is compared with theoretical predictions. The measured fission cross section from nuclear reactions (≈1.5 b) is approximately constant between 100 and 1000 A·MeV.  相似文献   

13.
14.
Left-right asymmetry of the angular distribution of prompt neutrons from 235U fission induced by polarized thermal neutrons was measured. This asymmetry is caused by the interference of the s and p waves in the input reaction channel and was found to be equal to b=(?5.8±1.4)×10?5.  相似文献   

15.
16.
The experimental data concerning scission (or prescission) neutrons are very contradictory—the relative part of these neutrons in the prompt fission neutrons varies from 1 to 35% owing to arbitrary assumptions made in different analyses. To solve this problem, we have used a new alternative method to search for the scission neutrons. We have found the left-right asymmetry of prompt-fission-neutron (PFN) emission caused by sp-wave interference in the entrance channel of the reaction and the P-odd asymmetry of the PFN emission caused by parity nonconservation at the exit channel of the fission process. Both effects cannot reside in PFN evaporated by excited fission fragments. The scission (or prescission) neutrons are responsible for these effects. The text was submitted by the authors in English.  相似文献   

17.
It is shown that the softening of the acoustic mode and the ensuing ferroelastic phase transition are due to the linear-quadratic interaction between the symmetric and antisymmetric deformations, which is presently neglected in the literature. An expression is obtained which can be used to predict the phase transition pressure if the initial elastic moduli are known.  相似文献   

18.
19.
The fission of natural Thorium byE n =4.8 and 14.0 MeV neutrons has been investigated by measuring the kinetic energies of both fragments in surface barrier detectors. The fragments were detected forE n =14.0 MeV neutron energy at 90 ° to the neutron beam, forE n =4.8 MeV at 0 ° and 90 °. The results given are the distributions of mass and of energy correlative to the fragment mass, and the correlation between anisotropy and fragment mass atE n =4.8 MeV. The average total kinetic energy before prompt neutron emission atE n =4.8 and 14.0 MeV neutron energy has been found to be \(\overline {E_K^* } \) =170.47±0.03 and 168.1 ± 0.05 MeV respectively. Within the limits of statistical error the anisotropy atE n =4.8 MeV is independent of the fragment mass. The results are analysed in the framework of the Two-Mode-Fission-Hypothesis. It appears, that the behaviour of the kinetic energy is too complicated as to be well described by the Two-Mode-Fission-Hypothesis. Both the Cluster Model of fission and the Fragment Shell Theory are suited to reproduce qualitatively the observed energetics of fission.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号