首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explore the entanglement-related features exhibited by the dynamics of a composite quantum system consisting of a particle and an apparatus (here referred to as the “pointer”) that measures the position of the particle. We consider measurements of finite duration, and also the limit case of instantaneous measurements. We investigate the time evolution of the quantum entanglement between the particle and the pointer, with special emphasis on the final entanglement associated with the limit case of an impulsive interaction. We consider entanglement indicators based on the expectation values of an appropriate family of observables, and also an entanglement measure computed on particular exact analytical solutions of the particle–pointer Schrödinger equation. The general behavior exhibited by the entanglement indicators is consistent with that shown by the entanglement measure evaluated on particular analytical solutions of the Schrödinger equation. In the limit of instantaneous measurements the system’s entanglement dynamics corresponds to that of an ideal quantum measurement process. On the contrary, we show that the entanglement evolution corresponding to measurements of finite duration departs in important ways from the behavior associated with ideal measurements. In particular, highly localized initial states of the particle lead to highly entangled final states of the particle–pointer system. This indicates that the above mentioned initial states, in spite of having an arbitrarily small position uncertainty, are not left unchanged by a finite-duration position measurement process.  相似文献   

2.
3.
4.
In this paper, we study the time evolution of the entropies and the degree of entanglement in the mixed state for a multi-quanta JC model taking into consideration Stark shift and Kerr-like medium effect, we use a numerical method to investigate the time evolution of the partial entropy of the atom and field subsystem. This is done in the framework of the multi-quanta presses JC model with both the Stark shift and Kerr-like medium effect added. Furthermore, we examine the effect of the superposition states and a statistical mixture of coherent states as an initial field on the entropies and entanglement. Our results show that the setting of the initial state play an important role in the evolution of the sub-entropies and entanglement.  相似文献   

5.
A key element in the architecture of quantum information processing is a reliable physical interface between fields and qubits. Here, we study the population transfer and entanglement for a two-level atomic system interacting with entangled spin coherent states (ESCSs) considering one- and two-mode interactions. The results show that decrease in the spin number provides a periodic behavior of the entanglement exhibiting the sudden death and birth phenomena. For large values of spin, the atom–field system stabilizes at high value of entanglement during the time evolution exhibiting maximum correlations for both cases of one- and two-mode interactions. Finally, we find an interesting correlation between the entanglement and the population transfer during the time evolution. In particular, we show that the population may be used as an indicator of nonlocal correlations in the system under consideration.  相似文献   

6.
The correlations dynamics of a pair of two-level atoms going though a cavity one after another are investigated. It is shown that initial entanglement of two atoms has interesting subsequent time evolution, including the so-called entanglement sudden death as expected, and initial uncorrelated states become entanglement and nonzero quantum discord in the same time. In particular, it is found that the curves of time evolution of entanglement and quantum discord are nearly same profile. It may lead to a better understanding of relations between entanglement and quantum discord.  相似文献   

7.
We investigate the entanglement dynamics and decoherence of a three-qubit system under a quantum spin environment at a finite temperature in the thermodynamics limit. For the case under study, we find the evolution of pairwise entanglement depends not only on the initial states but also on the parameters related to the system and the spin environment. In addition, an undesirable entanglement sudden death occurs in the process of entanglement evolution, and this effect can be controlled by the coupling constant between two qubits, external magnetic field, and the interaction between the system and the environment.  相似文献   

8.
杨青  杨名  李大创  曹卓良 《中国物理 B》2009,18(11):4662-4666
The entanglement property of two identical atoms, initially entangled in Bell states, coupled to a single-mode cavity is considered. Based on the reduced non-perturbative quantum master equation method, the entanglement evolution of the two atoms with decay is investigated beyond the conventional rotating-wave approximation. We show that the counter-rotating wave terms, usually neglected, have a great influence on the disentanglement behaviour of the system. The phenomena of entanglement sudden death and entanglement sudden birth will occur. In addition, we show that the entanglement can be strengthened by introducing the dipole--dipole interaction of the two atoms.  相似文献   

9.
We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.  相似文献   

10.
We investigate the non-Markovian effects on the entanglement transfer to the distant non-interacting atom qubits,which are embedded in a coupled superconducting resonator. The master equation governing the dynamics of the system is derived by the non-Markovian quantum state diffusion(NMQSD) method. Based on the solution, we show that the memory effect of the environment can lead to higher entanglement revival and make the entanglement last for a longer time. That is to say, the non-Markovian environment can enhance the entanglement transfer. It is also found that the maximum entanglement transferred to distant atoms can be modified by appropriately selecting the frequency of the modulated intercavity coupling. Moreover, with the initial anti-correlated state, the entanglement between the cavity fields can be almost completely transferred to the separated atoms. Lastly, we show that the memory effect has a significant impact on the generation of entanglement from the initial non-entangled states.  相似文献   

11.
马小三  王安民 《物理学报》2008,57(4):2026-2030
利用负性纠缠度(negativity)研究了两个三能级原子系统在费米环境中的纠缠演化问题-结果表明,两个三能级原子系统的纠缠演化不仅依赖于系统和环境的相互作用强度,而且还依赖于系统所处的具体量子态-通过例子发现,系统和环境相互作用强度越大,纠缠衰减越快;对于纯态,仅当时间趋于无穷时纠缠才被完全破坏;对于混态,则在有限的时间内纠缠即被彻底破坏-通过一般的分析找到了一类免退相干的量子子空间-在这些子空间中,量子态不受环境的影响,故其纠缠不变-研究有助于理解费米环境造成的退相干对玻色系统纠缠的影响- 关键词: 费米环境 纠缠演化 两个三能级原子  相似文献   

12.
Two atomic clusters, which have NA and Ns two-level atoms, respectively, are placed in a cavity but separated spatially. There is no direct interaction between the atoms. All the atoms interact with a single-mode of the cavity field. Quantum entanglement between the two atomic clusters is investigated for various initial states of the two atomic clusters and the field. When the cavity field is initially in a Fock state, we find that the time evolution of entanglement quasi-periodically oscillates regardless of the initial states of atoms. The oscillation period increases as the initial photon number increases. When all the atoms in both of the atomic clusters are initially in the excited state, we show that there is no entanglement between the atomic clusters with NA = NB = 1 regardless the initial state of the cavity field. However, when either NA or NB is larger than one, we find that the entanglement always exists even for a strong thermal field. In cases with different initial states of the atomic clusters, we notice that the entanglement becomes stronger as number of the atoms increases. When all the atoms in both of the clusters in the ground state, we also find that the entanglement can be enhanced even by a thermal field. We also notice that a single qubit can be entangled with multi-atoms which are initially in the ground state by the cavity field initially being in vacuum, thermal, coherent, and squeezed states.  相似文献   

13.
We present a family of tripartite entangled states that, in an asymptotical sense, can be reversibly converted into Einstein-Podolsky-Rosen (EPR) states, shared by parties B and C, and tripartite Greenberger-Horne-Zeilinger (GHZ) states. Thus we show that a bipartite and a genuine tripartite entanglement can be reversibly combined in a tripartite state. For such states the corresponding fractions of GHZ and EPR states represent a complete quantification of their (asymptotical) entanglement resources. More generally, we show that AB, AC, and BC EPR entanglement and GHZ entanglement can be reversibly combined in a single tripartite state. Finally, we generalize this result to any number of parties.  相似文献   

14.
We study the effect of feedback control on the entanglement evolution of two spins in a dissipative cavity governed by the Lindblad master equation. By numerically solving the master equation, we show that the entanglement can be controlled by the feedback based on the quantum jumps of the field in a leaking cavity. With the feedback added to the spins, the stable states with high degree of entanglement can be obtained in absence of the spontaneous decay of the spins, and the entanglement can also be generated for a period in presence of spontaneous decay of the spins. All the controlled entangled states are closely related to the initial states.  相似文献   

15.
Characterization of the multipartite mixed state entanglement is still a challenging problem. This is due to the fact that the entanglement for the mixed states, in general, is defined by a convex-roof extension. That is the entanglement measure of a mixed state ρ of a quantum system can be defined as the minimum average entanglement of an ensemble of pure states. In this paper, we show that polynomial entanglement measures of degree 2 of even-N qubits X states is in the full agreement with the genuine multipartite (GM) concurrence. Then, we plot the hierarchy of entanglement classification for four qubit pure states and then using new invariants, we classify the four qubit pure states. We focus on the convex combination of the classes whose at most the one of the invariants is non-zero and find the relationship between entanglement measures consist of non-zero-invariant, GM concurrence and one-tangle. We show that in many entanglement classes of four qubit states, GM concurrence is equal to the square root of one-tangle.  相似文献   

16.
GHZ类态原子体系与相干态光场相互作用的光场压缩特性   总被引:1,自引:1,他引:0  
本文采用求解Schr dinger方程和数值计算的方法,研究了处于GHZ类态的三个全同二能级纠缠原子与相干态光场相互作用的光场压缩特性,结果表明:光场压缩量随时间的演化关系与三原子体系纠缠度和相干态光场的光场强度相关.在光场较弱、纠缠度较小时,可出现光场压缩现象;光场的增强或纠缠度的增加,都会使光场压缩现象消失.  相似文献   

17.
Bound entanglement is central to many exciting theoretical results in quantum information processing, but has thus far not been experimentally realized. In this work, we consider a one-parameter family of four-qubit Smolin states. We experimentally produce these states in the polarization of four optical photons produced from parametric down-conversion. Within a range of the parameter, we show that our states are entangled and undistillable, and thus bound entangled. Using these bound-entangled states we demonstrate entanglement unlocking.  相似文献   

18.
Assuming the validity of a conjecture given by DiVincenzo et al. [Phys. Rev. A 61, 062312 (2000)] and by Dür et al. [Phys. Rev. A 61, 062313 (2000)], we show that the distillable entanglement for two bipartite states, each of which individually has zero distillable entanglement, can be nonzero. We show that this also implies that the distillable entanglement is not a convex function. Our example consists of the tensor product of a bound entangled state based on an unextendible product basis with an entangled Werner state which lies in the class of conjectured undistillable states.  相似文献   

19.
The Lieb-Robinson bound states that local Hamiltonian evolution in nonrelativistic quantum mechanical theories gives rise to the notion of an effective light cone with exponentially decaying tails. We discuss several consequences of this result in the context of quantum information theory. First, we show that the information that leaks out to spacelike separated regions is negligible and that there is a finite speed at which correlations and entanglement can be distributed. Second, we discuss how these ideas can be used to prove lower bounds on the time it takes to convert states without topological quantum order to states with that property. Finally, we show that the rate at which entropy can be created in a block of spins scales like the boundary of that block.  相似文献   

20.

In this paper, an entanglement measure for multipartite quantum states with respect to k-partition was introduced, which is called Schmidt number entanglement measure for multipartite k-nonseparable states, it is simply denoted by k-ME SN. We show that this measure is well-defined, i.e., it satisfies some basic properties as an entanglement measure. In addition, we give a super bound and lower bound of k-ME SN for multipartite pure states according to the definition of joint k-Schmidt number with respect to k-partition. Furthermore, we give some examples to show that Schmidt number entanglement measure can quantify the strength of entanglement for multipartite quantum states.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号