首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Light absorption by GaAs/AlAs heterostructures with a layer of self-assembled InAs quantum dots (QDs) at resonant tunneling through an energy-selected QD has been investigated. A high sensitivity of the current through this selected tunneling channel to the absorption of single photons with a wavelength λ ≲ 860 nm up to a temperature of 50 K is demonstrated; this sensitivity is caused by the Coulomb effect of the photoexcited holes captured by surrounding QDs on the resonance conditions. It is shown that single-photon absorption can discretely change the current through the system under study by a factor of more than 50. The captured-hole lifetimes have been measured, and a model has been developed to qualitatively describe the experimental data. It is also demonstrated that the InAs monolayer can effectively absorb photons. The properties of the heterostructure studied can be used not only to detect photons but also to design logical valves and optical memory devices.  相似文献   

2.
We report the experimental demonstration of a quantum teleportation protocol with a semiconductor single photon source. Two qubits, a target and an ancilla, each defined by a single photon occupying two optical modes (dual-rail qubit), were generated independently by the single photon source. Upon measurement of two modes from different qubits and postselection, the state of the two remaining modes was found to reproduce the state of the target qubit. In particular, the coherence between the target qubit modes was transferred to the output modes to a large extent. The observed fidelity is 80%, in agreement with the residual distinguishability between consecutive photons from the source. An improved version of this teleportation scheme using more ancillas is the building block of the recent Knill, Laflamme, and Milburn proposal for efficient linear optics quantum computation.  相似文献   

3.
半导体量子点在低温下产生谱线细锐的激子发光可制备单光子源.光纤耦合可避免低温共聚焦装置扫描定位和振动影响,是实现单光子源即插即用和组件化的关键技术.在耦合工艺上,基于微区定位标记发展出拉锥光纤与光子晶体腔或波导侧向耦合、大数值孔径锥形端面光纤与量子点样片垂直耦合等技术;然而,上述工艺需要多维度精密调节以避免柔软光纤的畸形弯曲实现对准和高效耦合.陶瓷插针或石英V槽封装的光纤无弯曲且具有大平滑端面,只要与单量子点样片对准贴合就可保证垂直收光, V槽封装的排式光纤还可通过盲对粘合避免扫描对准,耦合简单.本文在前期排式光纤粘合少对数分布Bragg反射镜(distributed Bragg reflector, DBR)微柱样片实现单光子输出基础上,经理论模拟采用多对数DBR腔提升样片垂直出光和光纤收光效率,使光纤输出单光子计数率大大提升.  相似文献   

4.
At this paper a field effect transistor based on graphene nanoribbon (GNR) is modeled. Like in most GNR-FETs the GNR is chosen to be semiconductor with a gap, through which the current passes at on state of the device. The regions at the two ends of GNR are highly n-type doped and play the role of metallic reservoirs so called source and drain contacts. Two dielectric layers are placed on top and bottom of the GNR and a metallic gate is located on its top above the channel region. At this paper it is assumed that the gate length is less than the channel length so that the two ends of the channel region are un-gated. As a result of this geometry, the two un-gated regions of channel act as quantum barriers between channel and the contacts. By applying gate voltage, discrete energy levels are generated in channel and resonant tunneling transport occurs via these levels. By solving the NEGF and 3D Poisson equations self consistently, we have obtained electron density, potential profile and current. The current variations with the gate voltage give rise to negative transconductance.  相似文献   

5.
We present measurements of the rates for an electron to tunnel on and off a quantum dot, obtained using a quantum point contact charge sensor. The tunnel rates show exponential dependence on drain-source bias and plunger gate voltages. The tunneling process is shown to be elastic, and a model describing tunneling in terms of the dot energy relative to the height of the tunnel barrier quantitatively describes the measurements.  相似文献   

6.
7.
We use a femtowatt focused laser beam to locate and manipulate a single quantum tunneling channel associated with an individual InAs quantum dot within an ensemble of dots. The intensity of the directed laser beam tunes the tunneling current through the targeted dot with an effective optical gain of 10(7) and modifies the curvature of the dot's confining potential and the spatial extent of its ground state electron eigenfunction. These observations are explained by the effect of photocreated hole charges which become bound close to the targeted dot, thus acting as an optically induced gate electrode.  相似文献   

8.
We have demonstrated efficient production of triggered single photons by coupling a single semiconductor quantum dot to a three-dimensionally confined optical mode in a micropost microcavity. The efficiency of emitting single photons into a single-mode traveling wave is approximately 38%, which is nearly 2 orders of magnitude higher than for a quantum dot in bulk semiconductor material. At the same time, the probability of having more than one photon in a given pulse is reduced by a factor of 7 as compared to light with Poissonian photon statistics.  相似文献   

9.
Resonant tunneling is accompanied by the accumulation of 2D electrons in the quantum well between the barriers of resonant tunneling diodes. In high-quality structures this gives a Z-shaped current-voltage characteristic, and it is shown that self-excitation of 2D plasmons occurs in this quantum well for any external circuit at completely realistic parameters of the structures. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 8, 628–633 (25 October 1998)  相似文献   

10.
11.
Tomofumi Tada 《Physics letters. A》2008,372(44):6690-6693
A novel detection mechanism and a robust control of a single nuclear spin-flip by hyperfine interactions between the nuclear spin and tunneling electron spin are proposed on the basis of ab initio non-equilibrium Green's function calculations. The calculated relaxation times of the nuclear spin of proton in a nano-contact system, Pd(electrode)-H2-Pd(electrode), show that ON/OFF switching of hyperfine interactions is effectively triggered by resonant tunneling mediated through the d-orbitals of Pd. The relaxation times at ON-resonance are ∼103 times faster than those at OFF-resonance, indicating that ON-resonance is suitable for the detection (read-out) of nuclear spin states. In addition, the effectiveness of bias voltage applications at OFF-resonance for selective operations on the proton qubit is demonstrated in the calculations of the resonant frequencies of proton using the gauge-invariant atomic orbital method.  相似文献   

12.
Bo Chang 《Physics letters. A》2010,374(29):2985-2938
We report a theoretical analysis of electron transport through a quantum dot with an embedded biaxial single-molecule magnet (SMM) based on mapping of the many-body interaction-system onto a one-body problem by means of the non-equilibrium Green function technique. It is found that the conducting current exhibits a stepwise behavior and the nonlinear differential conductance displays additional peaks with variation of the sweeping speed and the magnitude of magnetic field. This observation can be interpreted by the interaction of electron-spin with the SMM and the quantum tunneling of magnetization. The inelastic conductance and the corresponding tunneling processes are investigated with normal as well as ferromagnetic electrodes. In the case of ferromagnetic configuration, the coupling to the SMM leads to an asymmetric tunneling magnetoresistance (TMR), which can be enhanced or suppressed greatly in certain regions. Moreover, a sudden TMR-switch with the variation of magnetic field is observed, which is seen to be caused by the inelastic tunneling.  相似文献   

13.
Surface plasmonic effects of metallic particles have been known to be an effective method to improve the performances of light emitting didoes.In this work,we report the sputtered Au nanoparticles enhanced electroluminescence in inverted quantum dot light emitting diodes(ITO/AuNPs/ZnMgO/QDs/TFB/PEDOT:PSS/Al).By combining the timeresolved photoluminescence,transient electroluminescence,and ultraviolet photoelectron spectrometer measurements,the enhancement of the internal field enhanced exciton coupling to surface plasmons and the electron injection rate increasing with Au nanoparticles’incorporation can be explained.Phenomenological numerical calculations indicate that the electron mobility of the electron transport layer increases from 1.39×10~(-5)cm~2/V·s to 1.91×10~(-5)cm~2/V·s for Au NPs modified device.As a result,the maximum device luminescence is enhanced by 1.41 fold(from 14600 cd/cm~2to 20720 cd/cm~2)and maximum current efficiency is improved by 1.29 fold(from 3.12 cd/A to 4.02 cd/A).  相似文献   

14.
We report on the fabrication and the characterization of quantum dot transistors incorporating a single self-assembled quantum dot. The current–voltage characteristics exhibit clear staircase structures at room temperature. They are attributed to electron tunneling through the quantized energy levels of a single quantum dot.  相似文献   

15.
Motivated by the recent pioneering advances on nanoscale plasmonics and also nanophotonics technology based on the surface plasmons (SPs), in this work, we give a master equation model in the Lindblad form and investigate the quantum optical properties of single quantum dot (QD) emitter coupled to the SPs of a metallic nanowire. Our main results demonstrate the QD luminescence results of photon emission show three distinctive regimes depending on the distance between QD and metallic nanowire, which elucidates a crossover passing from being metallic dissipative for much smaller emitter-nanowire distances to surface plasmon (SP) emission for larger separations at the vicinity of plasmonic metallic nanowire. Besides, our results also indicate that, for both the resonant case and the detuning case, through measuring QD emitter luminescence spectra and second-order correlation functions, the information about the QD emitter coupling to the SPs of the dissipative metallic nanowire can be extracted. This theoretical study will serve as an introduction to understanding the nanoplasmonic imaging spectroscopy and pave a new way to realize the quantum information devices.  相似文献   

16.
17.
18.
Highly correlated photons or, accordingly, high-fidelity single-photon states are a prerequisite for closing detection loopholes in experimental tests of local realism and implementing scalable linear optical quantum computation. We demonstrate a parametric down-conversion source exhibiting a conditional detection efficiency of 51% (with corresponding preparation efficiency of 85%) and extraordinarily high detection rates of up to 8.5 x 10(5) coincidences/(s mW). We exploit a novel type-II phase matching configuration in a microstructured waveguide in conjunction with an ultrashort pump.  相似文献   

19.
20.
The aim of this work is to study the dynamic formation and dissociation of trions and excitons in double barrier resonant tunneling diodes. We propose a system of rate equations that takes into account the formation, dissociation and annihilation of these complexes inside the quantum well. From the solutions of the coupled equations, we are able to study the modulation of excitons and trions formation in the device as a function of the applied bias. The results of our model agree qualitatively with the experiments showing the viability of these rate equations system to study the dynamics of complex systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号