首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We demonstrate dynamical nuclear-spin polarization in the absence of an external magnetic field by resonant circularly polarized optical excitation of a single electron or hole charged quantum dot. Optical pumping of the electron spin induces an effective inhomogeneous magnetic (Knight) field that determines the direction along which nuclear spins could polarize and enables nuclear-spin cooling by suppressing depolarization induced by nuclear dipole-dipole interactions. Our experiments constitute a first step towards a quantum measurement of the Overhauser field.  相似文献   

2.
3.
In this paper we investigate adiabatic charge and spin pumping through interacting quantum dots using non-equilibrium Green's function techniques and the equation-of-motion method. We treat the electronic correlations inside the dot using a Hartree-Fock approximation and succeed in obtaining closed analytic expressions for the Keldysh Green's functions. These allow us to compute charge and spin currents through the quantum dot. Depending on the parameters of the quantum dot and its coupling to the reservoirs, we show that it can be found in two different regimes: the magnetic regime and the non-magnetic regime. In the magnetic regime we find a non-vanishing spin current in addition to the charge current present in both cases.  相似文献   

4.
Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.  相似文献   

5.
We address the precession of an ensemble of electron spins, each confined in a (In, Ga)As/GaAs self-assembled quantum dot. The quantum dot inhomogeneity is directly reflected in the precession of the optically oriented electron spins about an external magnetic field, which is subject to fast dephasing on a nanoseconds time scale. Proper periodic laser excitation allows synchronization of the electron spin precessions with the excitation cycle. The experimental conditions can be tailored such that eventually all (about a million) electron spins that are excited by the laser precess with a single frequency. In this regime the ensemble can be exploited during the single electron spin coherence times being in the microseconds range.  相似文献   

6.
We propose a teleportation scheme that relies only on single-photon measurements and Faraday rotation, for teleportation of many-qubit entangled states stored in the electron spins of a quantum dot system. The interaction between a photon and the two electron spins, via Faraday rotation in microcavities, establishes Greenberger-Horne-Zeilinger entanglement in the spin-photon-spin system. The appropriate single-qubit measurements, and the communication of two classical bits, produce teleportation. This scheme provides the essential link between spintronic and photonic quantum information devices by permitting quantum information to be exchanged between them.  相似文献   

7.
The pumping of electrons through double quantum dots (DQDs) attached to ferromagnetic leads have been theoretically investigated by using the nonequilibrium Green?s function method. It is found that an oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. In the case that both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration, where no net charge current exists. The possibility of manipulating the pumped spin current is explored by tuning the dot level and the ac field. By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. For the case that only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions on the average. The control of the magnitude and direction of the pumped charge and spin currents is also discussed by means of the magnetic flux threading through the DQD ring.  相似文献   

8.
An analytical formulation of the interband optical transmission and reflectivity spectra of a single quantum dot embedded in a semiconductor is presented. We consider the effect of the sample surface as well as other reflecting surfaces on the shape of the spectra near the ground state exciton resonance. The saturation of the transmission and reflectivity spectra due to the quantum optical saturation of the transition at higher light power is presented.  相似文献   

9.
The article discusses some of the recent results on semiconductor quantum dots with magnetic impurities. A single Mn impurity incorporated in a quantum dot strongly changes the optical response of a quantum-dot system. A character of Mn-carrier interaction is very different for II-VI and III-V quantum dots (QDs). In the II-VI QDs, a Mn impurity influences mostly the spin-structure of an exciton. In the III-V dots, a spatial localization of hole by a Mn impurity can be very important, and ultimately yields a totally different spin structure. A Mn-doped QD with a variable number of mobile carriers represents an artificial magnetic atom. Due to the Mn-carrier interaction, the order of filling of electronic shells in the magnetic QDs can be very different to the case of the real atoms. The “periodic” table of the artificial magnetic atoms can be realized in voltage-tunable transistor structures. For the electron numbers corresponding to the regime of Hund's rule, the magnetic Mn-carrier coupling is especially strong and the magnetic-polaron states are very robust. Magnetic QD molecules are also very different to the real molecules. QD molecules can demonstrate spontaneous breaking of symmetry and phase transitions. Single QDs and QD molecules can be viewed as voltage-tunable nanoscale memory cells where information is stored in the form of robust magnetic-polaron states. To cite this article: A.O. Govorov, C. R. Physique 9 (2008).  相似文献   

10.
We predict theoretically the optical signatures of spin polarization of carriers in self-assembled quantum dots. The emission spectra are mapped out as a function of increasing electron spin polarization for a fixed number of electrons and holes. The spin-polarized spectra are determined using exact diagonalization techniques for up to 12 particles, corresponding to two lowest filled shells. We predict that the spin polarization leads to photon polarization, to redshifts of emission lines due to excess exchange interactions among the spin-polarized electrons, and to a complete breakup of emission lines for spin-polarized electronic shells.  相似文献   

11.
We report the use of time-resolved Faraday rotation to induce and probe the polarization of nuclear spins within a set of quantum wells with varying background electron density. The electron density was controlled over a broad range by making use of structures of mixed type-I/type-II GaAs/AlAs quantum wells that spatially separate photoexcited electron–hole pairs. We find that the optically detected nuclear magnetic field decreases quasi-monotonically with increasing electron density. The likely factors responsible for this behavior are increased electron spin-lattice relaxation, increased electron spin delocalization, and dilution of the electron spin polarization.  相似文献   

12.
We propose a new mechanism for polarizing nuclear spins in quantum dots, based on periodic modulation of the hyperfine coupling by electric driving at the electron spin resonance frequency. Dynamical nuclear polarization results from resonant excitation rather than hyperfine relaxation mediated by a thermal bath, and thus is not subject to Overhauser-like detailed balance constraints. This allows polarization in the direction opposite to that expected from the Overhauser effect. Competition of the electrically driven and bath-assisted mechanisms can give rise to spatial modulation and sign reversal of polarization on a scale smaller than the electron confinement radius in the dot.  相似文献   

13.
We study the mechanism of nuclear spin relaxation in quantum dots due to the electron exchange with the 2D gas. We show that the nuclear spin relaxation rate 1/T(1) is dramatically affected by the Coulomb blockade (CB) and can be controlled by gate voltage. In the case of strong spin-orbit (SO) coupling the relaxation rate is maximal in the CB valleys, whereas for the weak SO coupling the maximum of 1/T(1) is near the CB peaks.  相似文献   

14.
We present a general formalism to study adiabatic pumping through interacting quantum dots. We derive a formula that relates the pumped charge to the local, instantaneous Green's function of the dot. This formula is then applied to the infinite-U Anderson model for both weak and strong tunnel-coupling strengths.  相似文献   

15.
We report on the resonant optical pumping of the | ± 1? spin states of a single Mn dopant in an InAs/GaAs quantum dot which is embedded in a charge tunable device. The experiment relies on a W scheme of transitions reached when a suitable longitudinal magnetic field is applied. The optical pumping is achieved via the resonant excitation of the central Λ system at the neutral exciton X(0) energy. For a specific gate voltage, the redshifted photoluminescence of the charged exciton X- is observed, which allows a nondestructive readout of the spin polarization. An arbitrary spin preparation in the | + 1? or |-1? state characterized by a polarization near or above 50% is evidenced.  相似文献   

16.
We demonstrate a one-to-one correspondence between the polarization state of a light pulse tuned to neutral exciton resonances of single semiconductor quantum dots and the spin state of the exciton that it photogenerates. This is accomplished using two variably polarized and independently tuned picosecond laser pulses. The first "writes" the spin state of the resonantly excited exciton. The second is tuned to biexcitonic resonances, and its absorption is used to "read" the exciton spin state. The absorption of the second pulse depends on its polarization relative to the exciton spin direction. Changes in the exciton spin result in corresponding changes in the intensity of the photoluminescence from the biexciton lines which we monitor, obtaining thus a one-to-one mapping between any point on the Poincaré sphere of the light polarization to a point on the Bloch sphere of the exciton spin.  相似文献   

17.
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.  相似文献   

18.
The analogy between quantum mechanics and electromagnetism is used to design an optical waveguide with the same transmission and traversal time as a quantum dot. Two different quantum dot geometries are considered for two typical applications: ultrafast devices and computing.  相似文献   

19.
We study spin-orbit mediated relaxation and dephasing of electron spins in quantum dots. We show that higher order contributions provide a relaxation mechanism that dominates for low magnetic fields and is of geometrical origin. In the low-field limit relaxation is dominated by coupling to electron-hole excitations and possibly 1/f noise rather than phonons.  相似文献   

20.
In this paper we use a density matrix formalism to model the spin photocurrent obtained from a single self-assembled quantum dot photodiode under the influence of an applied strong polarized electromagnetic pulse and a gate voltage. We show that the degree of polarization of the output photocurrent generated by a circularly polarized pulse in a strongly anisotropic quantum dot can be switched as we increase the pulse intensity. A similar effect is observed in a quantum dot with weak anisotropic electron–hole exchange interaction by using an elliptically polarized pulse. In the latter, a shorter pulse is needed, which creates an effective exchange channel through the biexciton. This phenomenon can be used as a dynamical switch to invert the spin-polarization of the extracted current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号