首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
By probing the resonances between a photonic band and an external laser field and their nonlinear changes in angle-resolved reflectivity, we show experimental evidence that the nonlinear optical changes in a two-dimensional photonic crystal waveguide with a Kerr nonlinearity are critically dependent on the dispersion nature and the group velocity of the photonic bands. The results agree well with the behavior predicted from band structures, indicating that the design of nonlinear optical properties of material systems is realistically possible by band dispersion and group velocity engineering.  相似文献   

2.
采用平面波展开法和时域有限差分法,研究了光子晶体表面光波导的色散及光传输特性。研究结果表明,表面模的出现及其色散特性与表面介质柱的半径相关,色散曲线的斜率保持单调变化,并在最低或最高频率附近展现低群速度频率区。由于光子带隙和全内反射的共同影响,光场将沿晶体表面高效率地传输。研究结果为探索在光子晶体外部控制光传输具有重要的理论意义。  相似文献   

3.
双泵浦光子晶体光纤参量放大研究   总被引:6,自引:5,他引:1  
利用光子晶体光纤在不同零色散波长附近具有不同色散的特性,研究了在零色散波长为780 nm和1550 nm附近的双泵浦光子晶体光纤参量放大过程.在780 nm附近,讨论了零色散波长变化对双泵浦光子晶体光纤参量放大的影响.数值模拟结果表明:当零色散波长发生微小的变化时,信号增益谱带宽会发生很大的变化.当两泵浦光之间的波长差值减小时,零色散波长的变化对参量放大的影响在很大程度上可以得到抑制,但是增益带宽会有一定的减小.依据这一原理,在1550 nm附近设计光子晶体光纤中的色散平坦光纤参量放大,在5 m长的光子晶体光纤中,当峰值功率为10 W时,得到了增益为65 dB,带宽达到420 nm且极为平坦的增益谱.  相似文献   

4.
光子晶体中缺陷的色散导致的群速度降低   总被引:8,自引:4,他引:4  
安丽萍  刘念华 《光学学报》2003,23(11):287-1290
利用传输矩阵方法计算了包含色散媒质缺陷的一维光子晶体的复透射系数,其中色散媒质用洛仑兹振子模型描述。计算了由复透射系数定义的等效复折射率并由此研究了频谱位于缺陷模频率附近的光脉冲的群速度。结果发现,由于缺陷模附近的透射谱敏感地依赖于缺陷层的光学厚度,而缺陷层的色散使缺陷层光学厚度随频率变化而改变,从而使包含缺陷的光子晶体的等效色散性质明显地依赖于缺陷的色散行为。由于光脉冲是由多种频率成分的单色场迭加构成的,透射脉冲由各单色场透射后重新迭加构成,因此波包的传播由介质的等效色散性质决定。与包含无色散缺陷的光子晶体相比,缺陷的色散可导致极慢的群速度。通过改变振子强度,群速度可从极慢光速转变为超光速(superluminal)。  相似文献   

5.
PBG光子晶体光纤的色散特性研究   总被引:1,自引:1,他引:1  
光子晶体光纤(PCF)是一种具有特殊包层结构的光纤,它是利用光子禁带效应(PBG)来导光的。利用时域有限差分法(FDTD)来分析光波在PCF中传输的色散特性,结果表明,PBG光子晶体光纤的色散值和色散斜率比常规的通信光纤要小。  相似文献   

6.
We consider optical properties of mesoporous aluminum-oxide-based photonic crystal films, derive the dispersion relation for electromagnetic waves, obtain the effective refractive index of the photonic crystal, and determine group velocities and effective masses of photons and polaritons in the mesoporous media. We compare the reflection spectra calculated with the experimental results. We discuss the potential for using mesoporous photonic-crystal films as amplifiers of electromagnetic radiation, high-efficiency selective mirrors, and optical filters.  相似文献   

7.
光子晶体光纤的原理、结构、制作及潜在应用   总被引:8,自引:5,他引:3       下载免费PDF全文
李启成 《应用光学》2005,26(6):49-52
传统光纤中的光能损耗和色散是阻碍其进一步向大容量和远距离通信方向发展的主要原因,因此制造具有低色散和低损耗的光子晶体光纤成为光纤技术努力的方向。在介绍光子晶体光纤的制作、导光原理和特点的基础上,研究了普通光纤不具备,而光子晶体光纤所具有的无休止的单模特性、奇异的色散特性、可控的非线性和易于实现的多芯传输等特点。研究结果表明,光子晶体光纤在光纤传感器、光子晶体天线、超宽色散补偿、光学集成电路等多方面具有广泛的应用前景。  相似文献   

8.
In this paper, the optical properties in finite size tilted and engineered one dimensional coupled resonator optical waveguide have been investigated. The large dependence of the optical transmittance, dispersion parameter and its higher order slope such as transmittance group delay, third order dispersion and intrinsic waveguide induced loss on the oblique incidence and fraction factor, as the ratio of the optical thicknesses of two adjacent layers, have been studied. Our results showed that as a consequence of changing the fraction factor, at normal incidence, photonic band gap zone, flat portion of third order dispersion curve and maximum magnitude of the transmission group delay can be tuned in long range of wavelength (red shift) slightly. Despite of slight tuning the optical properties in one dimensional coupled resonator optical waveguide by changing the fraction factor, incidence angle has a significant large magnitude of tunability in the overall region of operational wavelength. This fact yields us by changing the incidence from 30 to 60, the operational wavelength can be tuned between two main optical communication windows, while by changing the fraction factor, dispersion and its higher order can be fine tuned in each of optical communication windows which are very useful in wavelength division multiplexing systems and planar lightwave circuits.  相似文献   

9.
C Caer  X Le Roux  E Cassan 《Optics letters》2012,37(17):3660-3662
A flexible design of slot photonic crystal waveguide with a wide comb is investigated. Introduction of a carefully designed comb within the photonic crystal waveguide allows an accurate dispersion engineering in order to achieve slow light and increase the optical confinement within the comb. The strong light confinement results in an extremely small nonlinear effective area around 0.015 μm2. We report experimental realization of a comb photonic crystal waveguide with measured group indices higher than 100 in a Mach-Zehnder interferometer configuration and extract losses limited to 3.7?dB for a 100?μm device at ng=37.  相似文献   

10.
In this paper, femtosecond optical pulses compression and supercontinuum generation in a triangular silicon photonic crystal fiber at 2500 nm are investigated. A region of large minimum anomalous group velocity dispersion, negligible higher order dispersions and unique nonlinearity of silicon are used to demonstrate compression of 100 fs initial input optical pulses to 2.5 fs and ultra-broadband supercontinuum generation with very low input pulse energy over short distances of the fiber.  相似文献   

11.
程兰  罗兴  韦会峰  李海清  彭景刚  戴能利  李进延 《物理学报》2014,63(7):74210-074210
全固态光子带隙光纤由于其独特的带隙和色散特性以及易于和传统光纤熔接的优势,引起了国内外研究人员的广泛关注.本文采用等离子体化学气相沉积工艺结合堆叠拉制法制备了全固态光子带隙光纤,并运用频域有限差分法模拟了其损耗和色散特性.该光纤1550 nm处有较低损耗且单模传输,计算得到1550 nm处的有效模场面积和色散分别为191.81μm2和16.418 ps/(km·nm),在测试范围1500—1650 nm内损耗小于0.15 dB/m.结合实验结果,对光纤参数做了进一步模拟优化.  相似文献   

12.
Mookherjea S  Oh A 《Optics letters》2007,32(3):289-291
Slow-wave optical structures such as coupled photonic crystal cavities, coupled microresonators, and similar coupled-resonator optical waveguides are being proposed for slowing light because of the nature of their dispersion relationship. Since the group velocity becomes small, slow light and enhanced light-matter interaction may be observed at the edges of the waveguiding band. We derive a model of the effects of disorder on slow light in such structures, obtaining a relationship between the root-mean-square variation in the coupling coefficients and how slow the light is at the band edge.  相似文献   

13.
An optical delay line of coupled resonator optical waveguide(CROW) compensated by photonic crystal waveguide(PhCW) is proposed. In the structure,etching the periodic holes around the waveguide of the ring resonator waveguide does not increase the size of the CROW. Theoretical studies and numerical models indicate that through careful design,CROW and PhCW exhibit different group velocity dispersion(GVD) properties at a certain frequency range. Optical signal can not only be compensated in terms of GVD,but can also be delayed with longer time period. Due to the propagation mode mismatch of the two structures,optical loss becomes inevitable.  相似文献   

14.
The possibility of efficient second-harmonic generation in the optical range in a planar dielectric waveguide with the active region in the form of a one-dimensional photonic crystal has been theoretically shown. The true phase matching can be achieved by controlling wave dispersion in the photonic crystal. The dispersion equations for the photonic crystal and three-layer waveguide have been self-consistently solved. It is shown that the coherence length may exceed 10 mm.  相似文献   

15.
Novel concepts of nonlinear-optical (NLO) photonic metamaterials (MMs) are proposed. They concern with greatly enhanced coherent NLO energy exchange between ordinary and backward waves (BWs) through the frequency-conversion processes. Two different classes of materials which support BWs are considered: crystals that support optical phonons with negative group velocity and MMs with specially engineered spatial dispersion. The possibility to replace plasmonic NLO MMs enabling magnetic response at optical frequencies, which are very challenging to engineer, by the ordinary readily available crystals, are discussed. The possibility to mimic extraordinary NLO frequency-conversion propagation processes attributed to negative-index MMs (NIMs) is shown in some of such crystals, if optical phonons with negative group velocity and a proper phase-matching geometry are implemented. Here, optical phonons are used as one of the coupled counterparts instead of backward electromagnetic waves (BEMWs). The appearance of BEMWs in metaslabs made of carbon nanotubes, the possibilities and extraordinary properties of BW second harmonic generation in such MMs is another option of nonmagnetic NIMs, which is described too. Among the applications of the proposed photonic materials is the possibility of creation of a family of unique BW photonic devices such as frequency doubling metamirror and Raman amplifiers with greatly improved efficiency.  相似文献   

16.
Phase-matched parametric four-wave mixing in higher-order guided modes of a photonic crystal fiber is shown to result in an efficient decay of 40-fs 800-nm Ti:sapphire laser pump pulses into an anti-Stokes signal with a central wavelength around 590-600 nm and a Stokes signal centered at 1.25 microm. The photonic crystal fiber is designed in such a way as to minimize the group-velocity dispersion at the pump wavelength, phase match the parametric four-wave-mixing process, and reduce the group delay between the pump and the anti-Stokes pulses. The duration of the anti-Stokes pulse under these conditions, as shown by cross-correlation frequency-resolved optical gating measurements, is less than 200 fs.  相似文献   

17.
Using the model of an infinite one-dimensional periodic layered structure, we consider the possibilities of controlling dispersion properties and transmission spectra of hybrid optical components consisting of photonic band-gap structures filled with a resonant gas. It is shown that the combination of resonance-enhanced gas dispersion with the dispersion of a photonic band-gap structure may give rise to new features in the dispersion and transmission of hybrid spectral elements. These effects can be employed to create narrowband filters and ultrarefractive prisms with controllable parameters.  相似文献   

18.
In this article, a general theoretical framework to describe and analyze the optical properties of photonic crystals is presented. In addition to the analytical treatment of their optical response based on the method of Green’s function, numerical tools to calculate the dispersion relations and the eigenfunctions of the radiation field, transmission spectra, localized midgap modes, and lasing threshold are introduced and applied to some typical examples. Group theory to analyze the symmetry of the eigenmodes is also introduced, and the existence of uncoupled modes that cannot be excited by external plane waves is shown. The presence of the enhancement effect of nonlinear optical processes and stimulated emission due to the small group velocity which is easily realized in the photonic crystals is pointed out, and the possibility of low-threshold lasing in the photonic crystals is discussed.  相似文献   

19.
20.
We propose multicomponent magnetic photonic crystals as a basis component for nonreciprocal optical elements. It is shown that introduction of three or more components may provide violation of mirror reflection symmetry, which is a necessary condition for obtaining nonreciprocity in the dispersion of the structure's eigenmodes. Numerical simulations confirm that nonreciprocity indeed develops in the form of nonreciprocal photonic band structure of three-component low-symmetry photonic crystal. We find that symmetry constraints produce fine structure in the nonreciprocity at high-symmetry points of the Brillouin zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号