首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
朱金荣  香妹  胡经国 《物理学报》2012,61(18):187504-187504
比较了铁磁单层膜与铁磁/反铁磁双层膜结构中的磁畴演化行为, 发现由于反铁磁层膜对铁磁层膜的耦合作用使得系统的磁畴壁厚度、 磁畴壁等效质量、磁畴壁移动速度等发生了改变, 系统的矫顽场增强, 并出现了交换偏置场. 文章具体研究了反铁磁层耦合作用下其磁畴壁厚度、 等效质量以及磁畴壁移动速度等与反铁磁层的净磁化、 磁各向异性、界面耦合强度以及温度等的关系; 并研究了其对铁磁/反铁磁双层膜中的交换偏置场、矫顽场的影响. 进而 从磁畴结构的形成及其演化上揭示了铁磁/反铁磁双 层膜中出现交换偏置以及矫顽场增加的物理机制.  相似文献   

2.
We performed Monte Carlo simulations of a bilayer system composed of two thin films, one ferromagnetic (FM) and the other antiferromagnetic (AFM). Two lattice structures for the films were considered: simple cubic and body centered cubic (bcc). We imposed an uncompensated interfacial spin structure in both lattice structures; in particular we emulated an FeF2-FM system in the case of the bcc lattice. Our analysis focused on the incidence of the interfacial strength interactions between the films, J(eb), and the effect of thermal fluctuations on the bias field, H(EB). We first performed Monte Carlo simulations on a microscopic model based on classical Heisenberg spin variables. To analyze the simulation results we also introduced a simplified model that assumes coherent rotation of spins located on the same layer parallel to the interface. We found that, depending on the AFM film anisotropy to exchange ratio, the bias field is controlled either by the intrinsic pinning of a domain wall parallel to the interface or by the stability of the first AFM layer (quasi-domain wall) near the interface.  相似文献   

3.
时钟  杜军  周仕明 《中国物理 B》2014,23(2):27503-027503
Since the exchange bias (EB) effect was discovered in the Co/CoO core-shell nanoparticles, it has been extensively studied in various ferromagnet (FM)/antiferromagnet (AFM) bilayers due to its crucial role in spintronics devices. In this article, we review the investigation of the EB in our research group. First, we outline basic features of the EB, including the effects of the constituent layer thickness, the microstructure and magnetization of the FM layers, and we also discuss asymmetric magnetization reversal process in wedged-FM/AFM bilayers. Secondly, we discuss the mechanisms of the positive EB and the perpendicular EB. Thirdly, we demonstrate the hysteretic behavior of the angular dependence of the EB and analyze the EB training effect. Finally, we discuss the roles of the rotatable anisotropy in the two phenomena.  相似文献   

4.
Changing remanent states above blocking temperature (TB) in Ni50Mn36Sb14 alloy has been proven to be an effective way of tuning the value and sign of exchange bias (EB) field. The hysteresis loops at 5 K exhibit double shifted shape, indicating that there are two opposite EB signs resulting from an imprint of domain pattern of ferromagnetic (FM) regions into anti‐ferromagetic (AFM) ones during cooling. All the results demonstrate that the interfacial spin configuration plays a crucial role on the origin of EB, while the high cooling field not only induces a single FM domain state above TB but also tunes the fractions of FM and AFM interactions through martensitic transition. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Exchange bias (EB) of multiferroics presents many potential opportunities for magnetic devices. However, instead of using low-temperature field cooling in the hysteresis loop measurement, which usually shows an effective approach to obtain obvious EB phenomenon, there are few room temperature EB. In this article, extensive studies on room temperature EB without field cooling were observed in BiFeO3 nano- and microcrystals. Moreover, with increasing size the hysteresis loops shift from horizontal negative exchange bias (NEB) to positive exchange bias (PEB). In order to explain the tunable EB behaviors with size dependence, a phenomenological qualitative model based on the framework of antiferromagnetic (AFM) core-two-dimensional diluted antiferromagnet in a field (2D-DAFF) shell structure was proposed. The training effect (TE) ascertained the validity of model and the presence of unstable magnetic structure using Binek’s model. Experimental results show that the tunable EB effect can be explained by the competition of ferromagnetic (FM) exchange coupling and AFM exchange coupling interaction between AFM core and 2D-DAFF shell. Additionally, the local distortion of lattice fringes was observed in hexagonal-shaped BiFeO3 nanocrystals with well-dispersed behavior. The electrical conduction properties agreed well with the space charge-limited conduction mechanism.  相似文献   

6.
Electronic and magnetic structures of ferromagnetic (FM)/antiferromagnetic (AFM), Ni/FeF2(1 1 0), with a compensated AFM interface are investigated by using the full-potential linearized augmented plane-wave method. We find that magnetic structures at the AFM interface are perturbed by a contact with the FM material, where the superexchange interaction through the interface F excites and induces a small net moment at the AFM interface. These results predicted may play an important role for explaining the exchange bias in this system, and rule out the exchange bias mechanisms with the spin-flop coupling and the magnetic moment reorientation.  相似文献   

7.
The influence of non-magnetic defects on the exchange bias (EB) of ferromagnet?(FM)/antiferromagnet?(AFM) core/shell nanoparticles is studied by Monte Carlo simulations. It is found that the EB can be tuned by defects in different positions. Defects at both the AFM and FM interfaces reduce the EB field while they enhance the coercive field by decreasing the effective interface coupling. However, the EB field and the coercive field show respectively a non-monotonic and a monotonic dependence on the defect concentration when the defects are located inside the AFM shell, indicating a similar microscopic mechanism to that proposed in the domain state model. These results suggest a way to optimize the EB effect for applications.  相似文献   

8.
We consider the models of ferromagnetic (FM)/antiferromagnetic (AFM) bilayers and trilayers and perform a modified Monte Carlo method to study their exchange bias (EB) properties at low temperature after field cooling on increasing one component thickness at the expense of the other one. The results indicate that EB is insensitive to the thickness variations as the FM layer is thicker than the AFM one. Otherwise, it has a steep increase with the decrease of FM thickness, but the purely inverse proportion is no longer valid due to the dual influences of FM and AFM thicknesses. EB in trilayers should be approximately twice larger than that in bilayers because there is a double interfacial area in the trilayers compared with the bilayers, but the dispersed FM/AFM distributions may break this relation as a result of thermal destabilization. Moreover, EB is independent of FM/AFM stacking sequences probably because of the ideal interface between them. It has been clarified unambiguously that such control of EB through varying the FM/AFM dimensions in heterostructures is attractive for spintronics applications.  相似文献   

9.
Asymmetric magnetization reversal is an unusual phenomenon in antiferromagnet/ferromagnet (AF/FM) exchange biased bilayers. We investigated this phenomenon in a simple model system experimentally and by simulation assuming inhomogeneously distributed interfacial AF moments. The results suggest that the observed asymmetry originates from the intrinsic broken symmetry of the system, which results in local incomplete domain walls parallel to the interface in reversal to negative saturation of the FM. The magneto-optical Kerr effect unambiguously confirms such an asymmetric reversal and a depth-dependent FM domain wall in accord with the magnetometry and simulations.  相似文献   

10.
《Physics Reports》2005,422(3):65-117
The phenomenology of exchange bias and related effects in nanostructures is reviewed. The types of systems discussed include: lithographically fabricated ferromagnetic (FM)—antiferromagnetic (AFM) nanostructures, chemically surface modified FM particles, FM particles embedded in an AFM matrix, controlled core–shell particles, nanoparticles with surface effects and coupled AFM–AFM systems. The main applications of exchange biased nanostructures are summarized. Finally, the implications of the nanometer dimensions on some of the existing exchange bias theories are briefly discussed.  相似文献   

11.
研究铁磁/反铁磁双层膜系统中交换偏置场和矫顽场的冷却磁场依赖性.结果表明,随着冷却磁场的增加,交换偏置场由负值向正值转变.在转变点附近,矫顽场有-个特别的增强,并达到最大值.结果同相关实验-致.研究铁磁层和反铁磁层厚度对交换偏置场和矫顽场的影响.发现,正负交换偏置场和矫顽场随着铁磁层厚度的增大而减小,但随反铁磁层厚度的变化关系复杂.在正交换偏置场的情形,随反铁磁层厚度的增大,交换偏置场增强,矫顽场减弱;在负交换偏置场的情形,随反铁磁层厚度的增大,交换偏置场减弱,矫顽场增强.  相似文献   

12.
The exchange bias(EB) has been investigated in magnetic materials with the ferromagnetic(FM)/antiferromagnetic(AFM) contacting interfaces for more than half a century.To date,the significant progress has been made in the layered magnetic FM/AFM thin film systems.EB mechanisms have shown substantive research advances.Here some of the new advances are introduced and discussed with the emphasis on the influence of AFM layer,the interlayer EB coupling across nonmagnetic spacer,and the interlayer coupling across AFM layer,as well as EB related to multiferrioc materials and electrical control.  相似文献   

13.
The effect of noncollinearity between unidirectional and uniaxial anisotropies on asymmetric magnetization reversal of ferromagnet/antiferromagnet (FM/AFM) bilayer has been investigated. The results show the emergence of noncollinear anisotropies comes from the competition among applied magnetic field, magnetic anisotropy and exchange coupling in FM/AFM interface. The noncollinearity can lead to the asymmetry of hysteresis loop of FM/AFM bilayer. However, when the magnetic field is applied along the uniaxial anisotropy axis of FM layer, the hysteresis loop of FM/AFM bilayer is always symmetry independence of the noncollinear angle. Our results indicate that the asymmetry not only originates from the noncollinearity but also depends on the applied magnetic field orientation. Moreover, the asymmetry of hysteresis loop is always along with the appearance of unequivalence for magnetization reversal of FM/AFM bilayer, and there is a periodicity of π with orientation of applied field for its periodicity independence of the angle of the noncollinearity between the uniaxial and unidirectional anisotropies. The results can help us to open additional avenues to tailor the future advance magnetic device.  相似文献   

14.
提出了一个讨论铁磁/反铁磁双层膜中的交换偏置及矫顽场温度特性的物理模型,该模型,假设铁磁层为具有单畴各向异性的单畴膜而反铁磁层由许多相互独立具有多晶各向异性的颗粒组成,其温度依赖性主要来源于系统态的热不稳定,包括反铁磁颗粒易轴取向的热涨落和相关磁学量的温度依赖性等。计算结果表明其交换偏置随温度的增加非线性地减少而其矫顽场在体阻截温度处达极大值,且其体阻截温度随反铁磁颗粒粒径的增加而增加。我们的计算结果和相关实验结果一致,通过本的讨论,我们建议通过铁磁膜耦合上大粒径硬反铁磁颗粒膜可获得高交换偏置、低矫顽场且近独立于温度的相关磁学器件。  相似文献   

15.
熊知杰  王怀玉  丁泽军 《中国物理》2007,16(7):2123-2130
The exchange bias of bilayer magnetic films consisting of ferromagnetic (FM) and antiferromagnetic (AFM) layers in an uncompensated case is studied by use of the many-body Green's function method of quantum statistical theory. The effects of the layer thickness and temperature and the interfacial coupling strength on the exchange bias HE are investigated. The dependence of the exchange bias HE on the FM layer thickness and temperature is qualitatively in agreement with experimental results. When temperature varies, both the coercivity HC and HE decrease with the temperature increasing. For each FM thickness, there exists a least AFM thickness in which the exchange bias occurs, which is called pinning thickness.  相似文献   

16.
Monte Carlo simulations have been used to study the relationship between the exchange bias properties and the interface roughness in coupled ferromagnetic/antiferromagnetic (FM/AFM) films of classical Heisenberg spins. It is shown that the variation of the exchange bias field versus the AFM anisotropy strongly depends on the FM/AFM interface. Unlike the flat interface, a non-monotonic dependence is observed for the roughest FM/AFM interface. This is explained by canted magnetic configurations at the FM/AFM interface, which appear after the first reversal due to the magnetic frustration. The temperature dependence of the exchange field is also dependent on the roughness. While the exchange field is roughly constant for the flat interface, a decrease is observed for the roughest interface as the temperature increases. This has been interpreted as a significant decrease of the effective coupling between the FM and the AFM due to the disordering of the moments at the FM/AFM interface because of the combination of magnetic frustration and temperature activation.  相似文献   

17.
Magnetization reversal modes in a thin-film NiFeCuMo ferromagnet (FM) with periodically varying in-plane anisotropy are studied by the magneto-optical indicator film (MOIF) technique. The uni-directional anisotropy in FM regions exchange-coupled to a FeMn antiferromagnet (AFM) film in the form of square mesh stripes is alternated by the uniaxial anisotropy in the FM regions inside this mesh. It is shown that the boundaries formed along the edges of these stripes, which separate FM regions with different anisotropy, crucially influence the kinetics of domain-structure transformation in both types of FM regions. It is established that the lateral exchange anisotropy in the ferromagnet, which is determined by the stabilization of the spin distribution in the FM layer along the FM-(FM/AFM) interface, leads to the asymmetry of the magnetization reversal in FM regions bordered with an FM/AFM structure. Anisotropy of the mobility of 180-degree “charged” and “uncharged” domain walls situated, respectively, perpendicular and parallel to the unidirectional anisotropy axis is revealed. The difference observed between the mobilities of charged and uncharged domain walls is attributed to the difference in the spin distribution in these walls with respect to the unidirectional anisotropy axis and is a key factor for the difference between the magnetization reversal kinetics in horizontal and vertical exchange-biased FM stripes. Drastic differences are revealed in the asymmetry of magnetization reversal processes in mutually perpendicular narrow stripes of FM/AFM structures. Possible mechanisms of magnetization reversal in low-dimensional FM-(FM/AFM) heterostructures are discussed with regard to the effect of domain walls localized on the edges of AFM layers.  相似文献   

18.
Zero-field-cooled (ZFC) and field-cooled (FC) hysteresis loops of egg- and ellipsoid-shaped nanoparticles with inverted ferromagnetic (FM)-antiferromagnetic (AFM) core-shell morphologies are simulated using a modified Monte Carlo method, which takes into account both the thermal fluctuations and energy barriers during the rotation of spin. Pronounced exchange bias (EB) fields and reduced coercivities are obtained in the FC hysteresis loops. The analysis of the microscopic spin configurations allows us to conclude that the magnetization reversal occurs by means of the nucleation process during both the ZFC and FC hysteresis branches. The nucleation takes place in the form of “sparks” resulting from the energy competition and the morphology of the nanoparticle. The appearance of EB in the FC hysteresis loops is only dependent on that the movements of “sparks” driven by magnetic field at both branches of hysteresis loops are not along the same axis, which is independent of the strength of AFM anisotropy. The tilt of “spark” movement with respect to the symmetric axis implies the existence of additional unidirectional anisotropy at the AFM/FM interfaces as a consequence of the surplus magnetization in the AFM core, which is the commonly accepted origin of EB. Our simulations allow us to clarify the microscopic mechanisms of the observed EB behavior, not accessible in experiments.  相似文献   

19.
A model providing a semi-quantitative account of the magnetic behavior of Co nanoparticles embedded in a CoO matrix is presented. The results confirm that exchange coupling at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) nanostructures could provide an extra source of magnetic anisotropy, leading to thermal stability of the FM nanoparticles. It is shown that perpendicular coupling between the AFM and FM moments may result in large coercivities. The energy barrier, which works against reversal is due to the AFM susceptibility anisotropy. The experimentally observed exchange bias is tentatively ascribed to pre-existing intrinsic canting of the AFM moments at the interface.  相似文献   

20.
The properties of antiferromagnetic (AFM)–ferromagnetic (FM) bilayer have been studied using self-consistent mean-field approximation for Heisenberg Hamiltonian. The perpendicular exchange coupling has been revealed in a bilayer with a compensated interface. For a uniform AFM film a symmetrical hysteresis loop has been calculated, because the transverse instability develops within the AFM film at certain critical value of external magnetic field. On the other hand, shifted hysteresis loop with a finite exchange bias field has been obtained for a non-uniform AFM film consisting of various AFM domains with perpendicular directions of the easy anisotropy axes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号