首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied the changes in the superconducting properties of Nb films due to an array of Ni dots used as collective pinning sites. To determine the pinning mechanism, thin Ag layers of varying thicknesses were deposited on the Ni dots prior to the Nb film deposition. The Ag deposited on the pinning dots has little effect on the collective pinning phenomena, which implies that the main pinning mechanism is of magnetic origin.Received: 3 February 2004, Published online: 31 August 2004PACS: 74.25.Qt Vortex lattices, flux pinning, flux creep - 74.78.-w Superconducting films and low-dimensional structures  相似文献   

2.
Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC driven forces.  相似文献   

3.
We study experimentally the critical depinning current I(c) versus applied magnetic field B in Nb thin films which contain 2D arrays of circular antidots placed on the nodes of quasiperiodic (QP) fivefold Penrose lattices. Close to the transition temperature T(c) we observe matching of the vortex lattice with the QP pinning array, confirming essential features in the I(c)(B) patterns as predicted by Misko et al. [Phys. Rev. Lett. 95, 177007 (2005)]. We find a significant enhancement in I(c)(B) for QP pinning arrays in comparison to I(c) in samples with randomly distributed antidots or no antidots.  相似文献   

4.
A superconducting thin film with regular triangular arrays has been fabricated to explore the anisotropic vortex pinning behavior. We found that the critical currents for these films depend strongly on the current directions. Some interesting temperature-dependent phenomena are observed and discussed. We also made molecular dynamic simulations to study the dynamics of the vortex motion. The simulation results confirm the anisotropic features we found in the experiments.  相似文献   

5.
We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and nonstationary) two-dimensional dynamical structures.  相似文献   

6.
7.
We have formulated the theory of vortex pinning for thin film superfluids. The pinning site are closed regions where the superfluid density vanishes locally. Vortex pinning occurs due to vortex creation and annihilation at the boundaries of these regions and dominates pair processes in thicker films because of the cost of creating longer lengths of vortex line.  相似文献   

8.
A model is proposed for vortex pinning in a superconducting film with a rough surface. The model relates the critical current to the steepness of the surface relief and, at a high vortex concentration, to the distance between neighboring steepness maxima on the paths of vortex motion. The dependence of the critical current density on the thickness of a high-Tc superconducting film is measured in a weak magnetic field. Its behavior can be explained by the pinning at the stepped surface relief.  相似文献   

9.
We study the phase behavior of two-dimensional paramagnetic colloidal systems on square pinning arrays, the latter being created by a holographic optical tweezer technique. When the particle interaction strength is decreased, a transition from an incommensurate to a commensurate solid is observed. At even smaller pair potentials, the interstitial particles start to melt, whereas the particles at the substrate pinning sites are still localized. Our results are in good agreement with recent numerical studies on vortex melting in periodic pinning arrays.  相似文献   

10.
A system of vortices in a quasi-two-dimensional HTSC plate with periodic pinning is considered. The magnetization curves are calculated by the Monte Carlo method for different values of an external magnetic field and different temperatures. It is shown that the vortex system with periodic pinning may crystallize with an increase in temperature.  相似文献   

11.
可控的表面微结构在柔性电子、仿生器件和能源材料等方面均具有重要的应用价值.本文采用编织铜网作为掩模板,利用磁控溅射技术在柔性聚二甲基硅氧烷(PDMS)基底上制备具有周期分布的厚度梯度金属银薄膜,研究了薄膜在单轴压缩/拉伸过程中的形貌演化规律.实验发现,在单轴机械载荷作用下,银薄膜表面将形成相互垂直的条纹褶皱和多重裂纹.膜厚的梯度变化调制了薄膜的面内应力分布,导致褶皱在膜厚较小处率先形成,并逐渐扩展到膜厚较大区域,而裂纹则基本限定在膜厚较小区域.基于应力理论和有限元计算,对周期性厚度梯度薄膜的褶皱和裂纹的形貌特征、演化行为和物理机制进行了深入分析.该研究将有助于加深对非均匀薄膜体系的应变效应的理解,并有望通过梯度薄膜的结构设计在柔性电子等领域获得应用.  相似文献   

12.
13.
Hall effect and flux pinning in YBa2Cu3O6+x (YBCO) thin films doped with BaZrO3 (BZO) nanoparticles is investigated. The results show that sign reversal of the Hall coefficient from positive hole-like to negative electron-like occurs in vortex-liquid regime of undoped and BZO-doped YBCO films. With increasing BZO concentration the amplitude of the negative Hall effect is suppressed while the temperature position of the anomalous Hall effect does not depend significantly on doping level. In addition, it is shown that Hall conductivity increases non-monotonically with increasing BZO doping. These results support a model where BZO at low doping concentration induces point pinning centres turning to strong columnar pinning defects in films doped with 4% BZO.  相似文献   

14.
Pinning properties in 100 nm thick continuous and porous superconducting Nb films are examined by ac susceptibility and dc magnetization measurements. The Nb film was deposited on a smooth Si substrate, while the porous film, NbP, was deposited on an anodized Al oxide substrate. Pores or “antidots” 40 nm in diameter, 100 nm apart, form a triangular array. The porous film presents commensurate or matching field effects for applied magnetic fields where the magnetic flux threading each unit cell is an integer number of the flux quantum, where ac shielding capability and dc diamagnetic magnetization show an abrupt increase. The response to ac fields as a function of temperature and dc field provided a way to determine that NbP sample has higher pinning than the continuous one, and that TC suppression due to fluxoid quantization is not relevant for the investigated temperature range.  相似文献   

15.
Reverse domain nucleation time measurements have been performed on two Tb/Fe multilayer magneto-optic films exhibiting different degrees of domain wall pinning. A linear relationship between ln (reverse domain nucleation time) and the applied field has been predicted and observed for a sample exhibiting weak domain wall pinning. This is in agreement with theoretical work presented which addresses time dependence in systems possessing weak domain wall pinning. A non-linear relationship applicable over a restricted field range has been derived for a sample exhibiting strong domain wall pinning. Experimental results have indicated that this relationship is also valid.  相似文献   

16.
Uniform, graded and spaced arrays of 3 μm triangular antidots in pulsed laser deposited YBa2Cu3O7 (YBCO) superconducting thin films are compared by examining the improvements in the critical current density they produced. The comparison is made to establish the role of their lithographically defined (non‐)uniformity and the effectiveness to control and/or enhance the critical current density. It is found that almost all types of non‐uniform arrays, including graded ones enhance over the broad applied magnetic field and temperature range due to the modified critical state. Whereas uniform arrays of antidots either reduce or produce no effect on compared to the original (as‐deposited) thin films.

  相似文献   


17.
A system of Abrikosov vortices in a quasi-two-dimensional HTSC plate is considered for various periodic lattices of pinning centers. The magnetization and equilibrium configurations of the vortex density for various values of external magnetic field and temperature are calculated using the Monte Carlo method. It is found that the interaction of the vortex system with the periodic lattice of pinning centers leads to the formation of various ordered vortex states through which the vortex system passes upon an increase or a decrease in the magnetic field. It is shown that ordered vortex states, as well as magnetic field screening processes, are responsible for the emergence of clearly manifested peaks on the magnetization curves. Extended pinning centers and the effect of multiple trapping of vortices on the behavior of magnetization are considered. Melting and crystallization of the vortex system under the periodic pinning conditions are investigated. It is found that the vortex system can crystallize upon heating in the case of periodic pinning.  相似文献   

18.
The spontaneous formation of domains of commensurate vortex patterns near rational fractional matching fields of a periodic pinning array has been investigated with high resolution scanning Hall probe microscopy. We show that domain formation is promoted due to the efficient incorporation of mismatched excess vortices and vacancies at the corners of domain walls, which outweighs the energetic cost of creating them. Molecular dynamics simulations with a generic pinning potential reveal that domains are formed only when vortex-vortex interactions are long range.  相似文献   

19.
In this paper we give an overview of the cooperative effects in fluctuation driven transport arising from the interaction of a large number of particles. (i) First, we study a model with finite-sized, overdamped Brownian particles interacting via hard-core repulsion. Computer simulations and theoretical calculations reveal a number of novel cooperative transport phenomena in this system, including the reversal of direction of the net current as the particle density is increased, and a very strong and complex dependence of the average velocity on both the size and the average distance of the particles. (ii) Next, we consider the cooperation of a collection of motors rigidly attached to a backbone. This system possesses dynamical phase transition allowing spontaneous directed motion even if the system is spatially symmetric. (iii) Finally, we report on an experimental investigation exploring the horizontal transport of granular particles in a vertically vibrated system whose base has a sawtooth-shaped profile. The resulting material flow exhibits complex collective behavior, both as a function of the number of layers of particles and the driving frequency; in particular, under certain conditions, increasing the layer thickness leads to a reversal of the current, while the onset of transport as a function of frequency occurs gradually in a manner reminiscent of a phase transition. (c) 1998 American Institute of Physics.  相似文献   

20.
We study, by Langevin simulations, the depinning dynamics of two-dimensional magnetized colloids on a substrate with periodic pinning centers. When the number ratios of pinnings to colloids are 1:1 matching and at finite temperature, we find for the first time crossovers from plastic flow through elastic smectic flow to elastic crystal flow near the depinning with increasing the pinning strength. There exists a power-law scaling relationship between the average velocity of colloids and the external driving force for all the three types of flows. It is found that the critical driving force and the power-law scaling exponent as well as the average intensity of Bragg peaks are invariant basically in the region of elastic smectic flow. We also examine the temperature effect and it reveals that the above dynamic moving phases and their transitions could be attributed to the interplay between thermal fluctuation and pinning potential. At sufficiently low temperature, the thermal fluctuation could be neglected and the colloids near the depinning move in the elastic crystal flow no matter what the pinning strength. In addition, the number of pinning centers is changed and when it is close to the number of colloids, there appears a peak in the critical driving force and a dip in the power-law scaling exponent, respectively. The peak and dip are more pronounced for higher pinning strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号