首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The AdS/CFT correspondence may give a new way of understanding field theories in extreme conditions, as in the quark–gluon plasma phase of quark matter. The correspondence normally involves asymptotically AdS black holes with dual field theories which are defined on locally flat boundary spacetimes; the implicit assumption is that the distortions of spacetime which occur under extreme conditions do not affect the field theory in any unexpected way. However, AdS black holes are [to varying degrees] fragile, in the sense that they become unstable to stringy effects when their event horizons are sufficiently distorted. This implies that field theories on curved backgrounds may likewise be unstable in a suitable sense. We investigate this phenomenon, focussing on the “fragility” of AdS5 black holes with flat event horizons. We find that, when they are distorted, these black holes are always unstable in string theory. This may have consequences for the detailed structure of the quark matter phase diagram at extreme values of the spacetime curvature.  相似文献   

2.
The deformation of the connection in three spacetime dimensions by the kinematically equivalent coframe is shown to induce a duality between the (Lorentz-) rotational and translational field momenta, for which the coupling to the deformation parameter is inverted. This new kind of strong/weak duality, pertinent to 3D, is instrumental for studying exact solutions of the 3D Poincaré gauge field equations and the particle content of propagating modes on a background of constant curvature. For a topological Chern-Simons model of gravity, the propagating modes ‘living’ on an Anti-de Sitter (AdS) background correspond to real massive particles. Yang-Mills type generalizations and new cubic Lagrangians are found and completely classified in 3D. AdS or black hole type solutions with constant axial torsion emerge, also for these higher-order Lagrangians with new ‘exotic’ torsion-curvature couplings. Their pattern complies with our S-duality, with new repercussions for the field redefinition of the metric in 3D quantum gravity and the cosmological constant problem.  相似文献   

3.
In this study, the gravitational decoupling approach via extended geometric deformation is utilized to generate analytical black hole solutions owing to its simplicity and effectiveness. Considering the external fields surrounding Schwarzschild AdS black holes, we derive hairy black hole solutions in asymptotic AdS spacetime, satisfying the strong and dominant energy conditions. Moreover, we find that if the black hole spacetime is a fluid system, the fluid under each of these conditions is anisotropic.  相似文献   

4.
We investigate quantum entanglement of gravitational configurations in 3D AdS gravity using the AdS/CFT correspondence. We derive explicit formulas for the holographic entanglement entropy (EE) of the BTZ black hole, conical singularities and regularized AdS3. The leading term in the large temperature expansion of the holographic EE of the BTZ black hole reproduces exactly its Bekenstein-Hawking entropy S BH , whereas the subleading term behaves as ln S BH . We also show that the leading term of the holographic EE for the BTZ black hole can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus. This result indicates that black hole EE is not a fundamental feature of the underlying theory of quantum gravity but emerges when the semiclassical notion of spacetime geometry is used to describe the black hole.  相似文献   

5.
We review the relation between AdS spacetime in 1 $+$ 2 dimensions and the BTZ black hole (BTZbh). Later we show that a ground state in AdS spacetime becomes a thermal state in the BTZbh. We show that this is true in the bulk and in the boundary of AdS spacetime. The existence of this thermal state is tantamount to say that the Unruh effect exists in AdS spacetime and becomes the Hawking effect for an eternal BTZbh. In order to make this we use the correspondence introduced in algebraic holography between algebras of quasi-local observables associated to wedges and double cones regions in the bulk of AdS spacetime and its conformal boundary respectively. Also we give the real scalar quantum field as a concrete heuristic realization of this formalism.  相似文献   

6.
Stationary spacetimes containing a black hole have several properties akin to those of atoms. For instance, such spacetimes have only three classical degrees of freedom, or observables, which may be taken to be the mass, the angular momentum, and the electric charge of the hole. There are several arguments supporting a proposal originally made by Bekenstein that quantization of these classical degrees of freedom gives an equal spacing for the horizon area spectrum of black holes. We review some of these arguments and introduce a specific Hamiltonian quantum theory of black holes. Our Hamiltonian quantum theory gives, among other things, a discrete spectrum for the classical observables, and it produces an area spectrum which is closely related to Bekenstein's proposal. We also present a foamlike model of horizons of spacetime. In our model spacetime horizon consists of microscopic Schwarzschild black holes. Applying our Hamiltonian approach to this model we find that the entropy of any horizon is one quarter of its area.  相似文献   

7.
CHUAN-YI BAI 《Pramana》2013,80(2):199-206
In this paper, Hawking radiation is studied from four-dimensional (4D) Kaluza–Klein (KK) AdS black holes via the method of anomaly cancellation. The KK-AdS black hole considered is a non-extremal charged rotating solution in the theory of 4D gauged supergravity. Its Hawking fluxes of electric charge, angular momentum and energy momentum tensor are derived here. Our results support the common view that Hawking radiation is the quantum effect arising at the event horizon.  相似文献   

8.
We study the modes of evolution of massless scalar fields in the asymptotically AdS spacetime surrounding maximally symmetric black holes of large and intermediate size in the Lovelock model. It is observed that all modes are purely damped at higher orders. Also, the rate of damping is seen to be independent of order at higher dimensions. The asymptotic form of these frequencies for the case of large black holes is found analytically. Finally, the area spectrum for such black holes is found from these asymptotic modes.  相似文献   

9.
10.
Models of hadrons that are rooted in light-front (LF) formulation of QCD have been linked to the classical field equations in a 5-dimensional anti-de Sitter (AdS) gravitational background in terms of the Brodsky-de Téramond LF holography. We discuss the classical equations of motion for the expectation values of operators in quantum field theory whose nature resembles the Ehrenfest equations of quantum mechanics and which thus appear to provide a general justification for the holographic picture. The required expectation values are obtained by distinguishing one effective constituent of a hadron, the one that is struck by an external electro-weak or gravitational probe, and integrating over relative motion variables of all other constituents in all Fock components. The scale-dependent Fock decomposition of hadronic states is defined using the renormalization group procedure for effective particles. The AdS modes dual to the incoming and outgoing hadrons in the corresponding transition matrix elements are thus found equivalent to the Gaussian form distribution functions for the effective partons struck by external probes.  相似文献   

11.
Schwarzschild black holes with quantum corrections are studied under scalar field perturbations and electromagnetic field perturbations to analyze the effect of the correction term on the potential function and quasinormal mode (QNM). In classical general relativity, spacetime is continuous and there is no existence of the so-called minimal length. The introduction of the correction items of the generalized uncertainty principle, the parameter β, can change the singularity structure of the black hole gauge and may lead to discretization in time and space. We apply the sixth-order WKB method to approximate the QNM of Schwarzschild black holes with quantum corrections and perform numerical analysis to derive the results of the method. Also, we find that the effective potential and QNM in scalar fields are larger than those in electromagnetic fields.  相似文献   

12.
In these notes we present a summary of existing ideas about phase transitions of black hole spacetimes in semiclassical gravity and offer some thoughts on three possible scenarios or mechanisms by which these transitions could take place. We begin with a review of the thermodynamics of a black hole system and emphasize that the phase transition is driven by the large entropy of the black hole horizon. Our first theme is illustrated by a quantum atomic black hole system, generalizing to finite-temperature a model originally offered by Bekenstein. In this equilibrium atomic model, the black hole phase transition is realized as the abrupt excitation of a high energy state, suggesting analogies with the study of two-level atoms. Our second theme argues that the black hole system shares similarities with the defect-mediated Kosterlitz–Thouless transition in condensed matter. These similarities suggest that the black hole phase transition may be more fully understood by focusing upon the dynamics of black holes and white holes, the spacetime analogy of vortex and antivortex topological defects. Finally, we compare the black hole phase transition to another transition driven by an (exponentially) increasing density of states, the Hagedorn transition first found in hadron physics in the context of dual models or the old string theory. In modern string theory the Hagedorn transition is linked by the Maldacena conjecture to the Hawking–Page black hole phase transition in Anti-de Sitter (AdS) space, as observed by Witten. Thus, the dynamics of the Hagedorn transition may yield insight into the dynamics of the black hole phase transition. We argue that characteristics of the Hagedorn transition are already contained within the dynamics of classical string systems. Our third theme points to carrying out a full nonperturbative and nonequilibrium analysis of the large N behavior of classical SU(N) gauge theories to understand its Hagadorn transition. By invoking the Maldacena conjecture we can then gain valuable insight into black hole phase transitions in AdS space.  相似文献   

13.
林恺  杨树政 《中国物理 B》2011,20(11):110403-110403
A new simpler mathematic method is proposed to study fermions tunneling from black holes. According to this method, by using semiclassical approximation theory, it simplifies the Dirac equation of curved spacetime and then the relationship of the gamma matrix and the component of contravariant metric is considered in order to transform the set of difficult quantum equations into a simple equation. Finally, the fermion tunneling and Hawking radiation of black holes are obtained. The method is very effective and simple, and we will take the Schwarzschild black hole with global monopole and the higher-dimensional Reissner-Nordstrom de Sitter black hole as two examples to show the fact.  相似文献   

14.
In this paper, we focus on some aspects of the relation of spacetime and quantum mechanics and the study counterparts (in Set) of the categorical local symmetries of smooth 4-manifolds. In the set-theoretic limit, there emerge some exotic smoothness structures on R4 (hence the Riemannian nonvanishing curvature), which fit well with the quantum mechanical lattice of projections on infinite-dimensional Hilbert spaces. The method we follow is formalization localized on the open covers of the spacetime manifold. We discuss our findings in the context of the information paradox assigned to evaporating black holes. A black hole can evaporate entirely, but the smoothness structure of spacetime will be altered and, in this way, the missing information about the initial states of matter forming the black hole will be encoded. Thus, the possible global geometric remnant of black holes in spacetime is recognized as exotic 4-smoothness. The full-fledged verification of this proposal will presumably be possible within the scope of future quantum gravity theory research.  相似文献   

15.
The influential theorems of Hawking and Penrose demonstrate that spacetime singularities are ubiquitous features of general relativity, Einstein's theory of gravity. The utility of classical general relativity in describing gravitational phenomena is maintained by the cosmic censorship principle. This conjecture, whose validity is still one of the most important open questions in general relativity, asserts that the undesirable spacetime singularities are always hidden inside of black holes. In this Letter we reanalyze extreme situations which have been considered as counterexamples to the cosmic censorship hypothesis. In particular, we consider the absorption of fermion particles by a spinning black hole. Ignoring quantum effects may lead one to conclude that an incident fermion wave may over spin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when quantum effects are properly taken into account, the integrity of the black-hole event horizon is irrefutable. This observation suggests that the cosmic censorship principle is intrinsically a quantum phenomena.  相似文献   

16.
17.
The geodesics of tunneling particles were derived unnaturally and awkwardly in previous works. For one thing, the previous derivation was inconsistent with the variational principle of action. Moreover, the definition of geodesic equations for massive particles was quite different from that of massless case. Even worse, the relativistic and nonrelativistic foundations were mixed with each other during the past derivation of geodesics. As a highlight, remedying the urgent shortcomings, we improve treatment to derive the geodesic equations of massive and massless particles in a unified and self-consistent way. Besides, we extend to investigate the Hawking radiation via tunneling from Reissner-Nordström black holes in the context of AdS spacetime. Of special interest, the trick of utilizing the first law of black hole thermodynamics manifestly simplifies the calculation of tunneling integration.  相似文献   

18.
We show how to construct low energy solutions to the Randall-Sundrum II (RSII) model by using an associated five-dimensional anti-de Sitter space (AdS(5)) and/or four-dimensional conformal field theory (CFT(4)) problem. The RSII solution is given as a perturbation of the AdS(5)-CFT(4) solution, with the perturbation parameter being the radius of curvature of the brane metric compared to the AdS length ?. The brane metric is then a specific perturbation of the AdS(5)-CFT(4) boundary metric. For low curvatures the RSII solution reproduces 4D general relativity on the brane. Recently, AdS(5)-CFT(4) solutions with a 4D Schwarzschild boundary metric were numerically constructed. We modify the boundary conditions to numerically construct large RSII static black holes with radius up to ~20?. For a large radius, the RSII solutions are indeed close to the associated AdS(5)-CFT(4) solution.  相似文献   

19.
Relativistic heavy ion collisions create a strongly coupled quark-gluon plasma. Some of the plasma’s properties can be approximately understood in terms of a dual black hole. These properties include shear viscosity, thermalization time, and drag force on heavy quarks. They are hard to calculate from first principles in QCD. Extracting predictions about quark-gluon plasmas from dual black holes mostly involves solving Einstein’s equations and classical string equations of motion. AdS/CFT provides a translation from gravitational calculations to gauge theory predictions. The gauge theory to which the predictions apply is = 4 super-Yang-Mills theory. QCD is different in many respects from super-Yang-Mills, but it seems that its high temperature properties are similar enough to make some meaningful comparisons. Third Award in the 2007 Essay Competition of the Gravity Research Foundation.  相似文献   

20.
利用Fan和Liang(Fan Z Y,Liang H Z 2019 Phys.Rev.D 100086016)研究一般高阶导数引力复杂度的方法,对临界中性Gauss-Bonnet-anti-de Sitter(Gauss-Bonnet-anti-de Sitter,AdS)黑洞的复杂度演化进行研究,并且将研究结果和一般中性Gauss-Bonnet-AdS黑洞的结果进行了比较.研究发现,二者的复杂度演化的整体规律是一致的,它们的主要区别在无量纲的临界时间上.对于五维的临界中性Gauss-Bonnet-AdS黑洞,当黑洞视界面为平面或者球面时,不同大小的黑洞的无量纲的临界时间相同,都取到了最小值.当维度超过五维时,不同大小的球对称临界中性Gauss-Bonnet-AdS黑洞的无量纲临界时间的差异明显要比一般的情况小.这些差异很可能和中性Gauss-Bonnet-AdS黑洞的临界性有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号