首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We investigate suprathermal ion dynamics in simple magnetized toroidal plasmas in the presence of electrostatic turbulence driven by the ideal interchange instability. Turbulent fields from fluid simulations are used in the nonrelativistic equation of ion motion to compute suprathermal tracer ion trajectories. Suprathermal ion dispersion starts with a brief ballistic phase, during which particles do not interact with the plasma, followed by a turbulence interaction phase. In this one simple system, we observe the entire spectrum of suprathermal ion dynamics, from subdiffusion to superdiffusion, depending on beam energy and turbulence amplitude. We estimate the duration of the ballistic phase and identify basic mechanisms during the interaction phase that determine the dependencies of the character of suprathermal ion dispersion upon the beam energy and turbulence fluctuation amplitude.  相似文献   

3.
Transport is the outstanding physics issue in the quest for fusion by magnetic confinement. In spite of the intrinsic difficulty, a great deal of progress has been made in the past 25 years. Experiments have gone from being dominated by high anomalous losses, of the order of Bohm diffusion losses, to operation with no anomalous transport. This success is due to a combination of improved experimental infrastructure and the high degree of knowledge on how to control plasma discharges, Both have made it possible to access enhanced confinement regimes and to unravel new effects in confinement physics. Although there is not yet a complete understanding of the dynamical mechanisms underlying the anomalous transport process, there is some understanding of important components such as the ion transport loss mechanism at the plasma core and of the main mechanism for turbulence suppression in the enhanced confinement regimes  相似文献   

4.
The electron heat transport is investigated in ASDEX Upgrade conventional L-mode plasmas with pure electron heating provided by electron-cyclotron heating (ECH) at low density. Under these conditions, steady-state and ECH modulation experiments indicate without ambiguity that electron heat transport exhibits a clear threshold in inverted Delta T(e)/T(e) and also suggest that it has a gyro-Bohm character.  相似文献   

5.
郑伟真  赵斌  胡广月  郑坚 《物理学报》2015,64(19):195201-195201
发展了考虑一维柱对称、球对称位型下流体演化的Fokker-Planck程序, 在流体力学极限下对程序进行了校验. 利用程序模拟研究了球对称位型、平板位型下等离子体在自由稀疏演化过程中电子热流的非局域热输运行为, 分析了几何位型对电子非局域热传导的影响. 非局域卷积理论的计算研究发现, 稀疏过程中空间的几何效应会减小外向电子热输运的非局域性.  相似文献   

6.
7.
8.
简广德  董家齐 《物理学报》2003,52(7):1656-1662
用粒子模拟方法求解描述环形等离子体中电子温度梯度静电模的回旋动力学方程.方程采用圆磁通面的轴对称环形几何系统,考虑了有限拉摩半径、电子渡越频率kv 以及环形漂移(曲率和磁场梯度)运动wD(v2,v 2,θ)的效应.简述了粒子模拟的基本方法.采用了四阶变步长积分格式,使计算省时、简便.讨论了模的基本特征 , 并且给出了临界梯度对电子温度与离子温度之 关键词: 电子温度梯度不稳定性 粒子模拟 变步长积分格式 临界梯度  相似文献   

9.
10.
简广德  董家齐 《中国物理》2004,13(6):898-904
Electron temperature gradient driven instability in toroidal plasmas with negative magnetic shear is studied. Full electron kinetics is considered, and the behaviours of the modes and corresponding turbulent transport in the parameter regimes close to the instability threshold are emphasized. Growing and damped modes are both investigated. The singular points of the integrand are disposed of, and the fitting formulae for the critical gradient are given. The theoretical results are shown to be close to the experimental observations.  相似文献   

11.
董亚林  赵斌  郑坚 《中国物理》2007,16(12):3742-3746
Non-local electron transport in laser-produced plasmas under inertial confinement fusion (ICF) conditions is studied based on Fokker-Planck (FP) and hydrodynamic simulations. A comparison between the classical Spitzer--H\"arm (SH) transport model and non-local transport models has been made. The result shows that among those non-local models the Epperlein and Short (ES) model of heat flux is in reasonable agreement with the FP simulation in overdense region. However, the non-local models are invalid in the hot underdense plasmas. Hydrodynamic simulation is performed with the flux limiting model and the non-local model, separately. The simulation results show that in the underdense region of the laser-produced plasmas the temperature given by the flux limiting model is significantly higher than that given with the non-local model.  相似文献   

12.
Anomalous momentum transport has been observed in Alcator C-Mod tokamak plasmas through analysis of the time evolution of core impurity toroidal rotation velocity profiles. Following the L-mode to EDA (enhanced D(alpha)) H-mode transition, the ensuing cocurrent toroidal rotation velocity, which is generated in the absence of any external momentum source, is observed to propagate in from the edge plasma to the core. The steady state toroidal rotation velocity profiles are relatively flat and the momentum transport can be simulated with a simple diffusion model. Velocity profiles during edge localized mode free (ELM-free) H-modes are centrally peaked, which suggests the addition of inward momentum convection. In all operating regimes the observed momentum diffusivities are much larger than the neoclassical values.  相似文献   

13.
We present analytic and numerical results on several models of one-dimensional (1D) classical lattices with the goal of determining the origins of anomalous heat transport and the conditions for normal transport in these systems. Some of the recent results in the literature are reviewed and several original "toy" models are added that provide key elements to determine which dynamical properties are necessary and which are sufficient for certain types of heat transport. We demonstrate with numerical examples that chaos in the sense of positivity of Lyapunov exponents is neither necessary nor sufficient to guarantee normal transport in 1D lattices. Quite surprisingly, we find that in the absence of momentum conservation, even ergodicity of an isolated system is not necessary for the normal transport. Specifically, we demonstrate clearly the validity of the Fourier law in a pseudo-integrable particle chain.  相似文献   

14.
The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak à Configuration Variable, were motivated by the recent theoretical discovery of ion-scale turbulent momentum transport induced by an up-down asymmetry in the magnetic equilibrium. The toroidal rotation gradient is observed to depend on the asymmetry in the outer part of the plasma leading to a variation of the central rotation by a factor of 1.5-2. The direction of the effect and its magnitude are in agreement with theoretical predictions for the eight possible combinations of plasma asymmetry, current, and magnetic field.  相似文献   

15.
16.
17.
18.
孙安邦  李晗蔚  许鹏  张冠军 《物理学报》2017,66(19):195101-195101
流体或者粒子-流体混合数值仿真是研究流注放电基本物理机制的常用手段,而精确的电子输运系数是保证其仿真正确性的必要前提.鉴于现有电子输运系数求解工具存在一定缺陷,本文开发了采用蒙特卡罗方法求解低温等离子体中电子输运系数的仿真工具,测试表明其准确性和精确度均较高.研究了氮氧气体混合比及大气压下三体碰撞吸附对电子输运系数的影响.氮气中流注放电仿真表明,流体仿真中采用本模型改进后的电子输运系数可显著改善流注通道内部的等离子体参数分布.  相似文献   

19.
Turbulent thermal convection is a well-studied problem with various issues of interest. In this paper, we review our work which shows the nature and origin of anomalous scaling and heat transport in the limit of very strong thermal forcing, can be gained by studying a dynamical model, known as shell model, of homogeneous turbulent thermal convection in which buoyancy acts directly at most scales. Specifically, we have obtained two results. The first result is that when buoyancy acts directly at most scales such that the dynamics are governed by a cascade of entropy, the scaling behavior is described by Bolgiano and Obukhov scaling plus corrections that are due to the variations of the local entropy transfer rate. This result indicates the validity of the extension of refined similarity hypothesis to turbulent thermal convection. The second result is that when buoyancy is acting directly at most scales, a damping term acting on the largest scale, which has to be added for the system to achieve stationarity, plays a crucial role in heat transport, and that the heat transport depends on the strength of thermal forcing in the same manner as that predicted for the ultimate state of very strong thermal forcing. With our interpretation of the damping term representing the effect of the boundaries, this result indicates that in the ultimate state of turbulent thermal convection, when buoyancy is acting at most scales, boundaries would play a significant role in heat transport.  相似文献   

20.
The experimental conditions that facilitate the excitation of parametric decay instabilities upon the electron cyclotron resonance heating of a plasma at the second harmonic extraordinary wave in tokamaks and stellarators and, as a result, make anomalous absorption of microwave power possible have been analyzed. It has been shown that, in the case of a nonmonotonic radial profile of the plasma density, when the beam of electron cyclotron waves passes near the equatorial plane of a toroidal device, the parametric excitation of electron Bernstein waves, as well as the generation of ion Bernstein waves propagating from the parametric decay region to the nearest ion cyclotron harmonic, where they efficiently interact with ions, is possible. The proposed theoretical model can explain the anomalous generation of accelerated ions observed upon electron cyclotron heating in small and moderate toroidal facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号