首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郑大川  同宁华 《中国物理 B》2017,26(6):60501-060501
Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σ_z for the biased sub-Ohmic spin-boson model. The small-ω behavior C(ω) ∝ω~s is found to be universal and independent of the bias ε and the coupling strength α(except at the quantum critical point α = αc and ε = 0). Our NRG data also show C(ω) ∝χ~2ω~s for a wide range of parameters, including the biased strong coupling regime(ε = 0 and α α_c), supporting the general validity of the Shiba relation. Close to the quantum critical point αc,the dependence of C(ω) on α and ε is understood in terms of the competition between ε and the crossover energy scale ω_0~*of the unbiased case. C(ω) is stable with respect to ε for ε《ε~*. For ε》ε~*, it is suppressed by ε in the low frequency regime. We establish that ε~*∝(ω_0~*)~(1/θ)holds for all sub-Ohmic regime 0≤s 1, with θ = 2/(3s) for 0 s≤1/2 and θ = 2/(1 + s) for 1/2 s 1. The variation of C(ω) with α and ε is summarized into a crossover phase diagram on the α–ε plane.  相似文献   

2.
Employing the nonperturbative numerical renormalization group method, we study the dynamics of the spin-boson model, which describes a two-level system coupled to a bosonic bath with a spectral density J(omega) proportional to omega(s). We show that, in contrast with the case of Ohmic damping, the delocalized phase of the sub-Ohmic model cannot be characterized by a single energy scale only, due to the presence of a nontrivial quantum phase transition. In the strongly sub-Ohmic regime, s<1, weakly damped coherent oscillations on short time scales are possible even in the localized phase--this is of crucial relevance, e.g., for qubits subject to electromagnetic noise.  相似文献   

3.
《Physics letters. A》2002,305(5):275-280
The spin-boson model is studied by means of flow equations for Hamiltonians. Our truncation scheme includes all coupling terms which are linear in the bosonic operators. Starting with the canonical generator ηc=[H0,H] with H0 resembling the non-interacting bosonic bath, the flow equations exhibit a universal attractor for the Hamiltonian flow. This allows to calculate equilibrium correlation functions for super-Ohmic, Ohmic and sub-Ohmic baths within a uniform framework including finite bias.  相似文献   

4.
5.
We consider a quantum impurity model in which a bosonic impurity level is coupled to a non-interacting bosonic bath, with the bosons at the impurity site subject to a local Coulomb repulsion U. Numerical renormalization group calculations for this bosonic single-impurity Anderson model reveal a zero-temperature phase diagram where Mott phases with reduced charge fluctuations are separated from a Bose-Einstein condensed phase by lines of quantum critical points. We discuss possible realizations of this model, such as atomic quantum dots in optical lattices. Furthermore, the bosonic single-impurity Anderson model appears as an effective impurity model in a dynamical mean-field theory of the Bose-Hubbard model.  相似文献   

6.
7.
量子相变     
蔡玉平  宁如云  韩代朝 《低温与超导》2006,34(2):123-125,148
量子相变是一种发生在绝对零度,由量子涨落而非热涨落导致的相变现象,满足著名的海森堡不确定关系。通过零温量子临界点的研究,可获知物质系统更广泛范围的行为,包括稀土磁性绝缘体,高温超导体和二维电子气体等。  相似文献   

8.
9.
A.S.T. Pires  B.V. Costa 《Physica A》2009,388(18):3779-3784
In this paper we study the quantum phase transition in a three-dimensional XY model with single-ion anisotropy D and spin S=1. The low D phase is studied using the self consistent harmonic approximation, and the large D phase using the bond operator formalism. We calculate the critical value of the anisotropy parameter where a transition occurs from the large-D phase to the Néel phase. We present the behavior of the energy gap, in the large-D phase, as a function of the temperature. In the large D region, a longitudinal magnetic field induces a phase transition from the singlet to the antiferromagnetic state, and then from the AFM one to the paramagnetic state.  相似文献   

10.
This paper presents the results of stationary-phase Monte Carlo simulations for the dynamics of the spin-boson problem. The problem of alternating weights ubiquitous in dynamical simulations has been solved using discretized path-integral simulations in conjunction with stationary-phase filtering techniques. Our computation covers the bulk of the parameter space, including non-zero bias and frequency-dependent dissipation. Besides a comparison with analytic predictions, we present some new results. For sub-Ohmic dissipation, the dynamics at low temperatures depends significantly on the initial preparation. In the Ohmic regime 1/2<K<1, whereK is Kondo's dimensionless coupling strength, we find significant deviations from the predictions of the non-interacting blip approximation at long times and low temperatures.  相似文献   

11.
By using the density matrix renormalization group technique, the quantum phase transitions in the frustrated Majumdar-Ghosh model are investigated. The behaviors of the conventional order parameter and the quantum entanglement entropy are analyzed in detail. The order parameter is found to peak at J2∼0.58, but not at the Majumdar-Ghosh point (J2=0.5). Although, the quantum entanglements calculated with different subsystems display dissimilarly, the extremes of their first derivatives approach to the same critical point. By finite size scaling, this quantum critical point JC2 converges to around 0.301 in the thermodynamic limit, which is consistent with those predicted previously by some authors (Tonegawa and Harada, 1987 [6]; Kuboki and Fukuyama, 1987 [7]; Chitra et al., 1995 [9]). Across the JC2, the system undergoes a quantum phase transition from a gapless spin-fluid phase to a gapped dimerized phase.  相似文献   

12.
We show that the fractal growth described by the dielectric breakdown model exhibits a phase transition in the multifractal spectrum of the growth measure. The transition takes place because the tip splitting of branches forms a fixed angle. This angle is eta dependent but it can be rescaled onto an "effectively" universal angle of the diffusion-limited aggregation branching process. We derive an analytic rescaling relation which is in agreement with numerical simulations. The dimension of the clusters decreases linearly with the angle and the growth becomes non-ractal at an angle close to 74 degrees (which corresponds to eta = 4.0+/-0.3).  相似文献   

13.
Motivated by the strong, low temperature damping of nodal quasiparticles observed in some cuprate superconductors, we study quantum phase transitions in d(x(2)-y(2)) superconductors with a spin-singlet, zero momentum, fermion bilinear order parameter. We present a complete, group-theoretic classification of such transitions into seven distinct cases (including cases with nematic order) and analyze fluctuations by the renormalization group. We find that only two, the transitions to d(x(2)-y(2))+is and d(x(2)-y(2))+id(xy) pairing, possess stable fixed points with universal damping of nodal quasiparticles; the latter leaves the gapped quasiparticles along (1,0), (0,1) essentially undamped.  相似文献   

14.
Quantum phase transitions in mesoscopic systems are studied. It is shown that the main features of phase transitions, defined for infinite number of particles, N--> infinity, persist even for moderate N approximately 10. A Landau analysis of first order transitions is done and a "critical" exponent at the spinodal point is defined. Two order parameters are introduced to distinguish first from second order transitions. Applications to atomic nuclei, molecules, atomic clusters, and finite polymers are mentioned. Experimental evidence in atomic nuclei is presented.  相似文献   

15.
Quantum phase transitions occur at zero temperature when some non‐thermal control‐parameter like pressure or chemical composition is changed. They are driven by quantum rather than thermal fluctuations. In this review we first give a pedagogical introduction to quantum phase transitions and quantum critical behavior emphasizing similarities with and differences to classical thermal phase transitions. We then illustrate the general concepts by discussing a few examples of quantum phase transitions occurring in electronic systems. The ferromagnetic transition of itinerant electrons shows a very rich behavior since the magnetization couples to additional electronic soft modes which generates an effective long‐range interaction between the spin fluctuations. We then consider the influence of rare regions on quantum phase transitions in systems with quenched disorder, taking the antiferromagnetic transitions of itinerant electrons as a primary example. Finally we discuss some aspects of the metal‐insulator transition in the presence of quenched disorder and interactions.  相似文献   

16.
17.
18.
19.
Novel quantum phases are found in the ground state of Rashba ring: the orbital magnetic phase (OMP), non-OMP, pseudo-OMP and quasi-OMP, which depend on the spin-orbit interaction (SOI) strength, electron number and ring size. We give the phase diagram and their quantum-phase-transition conditions.  相似文献   

20.
We investigate quantum phase transitions (QPTs) in spin chain systems characterized by local Hamiltonians with matrix product ground states. We show how to theoretically engineer such QPT points between states with predetermined properties. While some of the characteristics of these transitions are familiar, like the appearance of singularities in the thermodynamic limit, diverging correlation length, and vanishing energy gap, others differ from the standard paradigm: In particular, the ground state energy remains analytic, and the entanglement entropy of a half-chain stays finite. Examples demonstrate that these kinds of transitions can occur at the triple point of "conventional" QPTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号