首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider atomic Fermi gases where Feshbach resonances can be used to study the whole BCS-Bose-Einstein condensate crossover. We show how a probing field transferring atoms out of the superfluid can be used to detect the onset of the superfluid transition in the high-T(c) and BCS regimes. The number of transferred atoms, as a function of the energy given by the probing field, peaks at the gap energy. The shape of the peak is asymmetric due to the single particle excitation gap. Since the excitation gap also includes a pseudogap contribution, the asymmetry alone is not a signature of superfluidity. The incoherent nature of the noncondensed pairs leads to broadening of the peak. The broadening decays below the critical temperature, causing a drastic increase in the asymmetry. This provides a signature of the transition.  相似文献   

2.
Magnetic effects in a degenerate atomic Fermi gas, such as the exchange enhancement of the paramagnetic susceptibility and the existence of the phase transition to the ferromagnetic state with the spontaneous polarization of the atomic spins, are discussed. The propagation of spin waves in the atomic system is considered.  相似文献   

3.
We review our recent experimental realization and investigation of a spin orbit (SO) coupled Bose Einstein condensate (BEC) and quantum degenerate Fermi gas. By using two counter-propagathlg Ranlan lasers and controlling the different frequency of two R,aman lasers to engineer the atom light interaction, we first study the SO coupling in BEC. Then we study SO coupling in Fermi gas. We, observe the spin dephasing in spin dynamics and momentum distribution asymmetry of the equilibrium state as halhnarks of SO coupling in a Fermi gas. To clearly reveal the, property of SO coupling Fermi gas, we also study the momentmn-resolved radio-frequency spectroscopy which characterizes the energy momentum dispersion and spin composition of the quantum states. We observe the change of errmion surfaces in different helieity branches with different atomic density, which indicates that a Lifshitz transition of the Fermi surface topology change can be found by further cooling the system. At last, we study the momentum-resolved Raman spectroscopy of an ultracoht Fermi gas.  相似文献   

4.
We have produced a macroscopic quantum system in which a 6Li Fermi sea coexists with a large and stable 23Na Bose-Einstein condensate. This was accomplished using interspecies sympathetic cooling of fermionic 6Li in a thermal bath of bosonic 23Na. The system features rapid thermalization and long lifetimes.  相似文献   

5.
We propose an analytical model for the prediction and accurate calculation of size and density dependent quantum oscillations in thermodynamic and transport properties of confined and degenerate Fermi gases. Our model considers only half-vicinity states of Fermi level. We show that the half-vicinity model quite accurately estimates quantum oscillations depending on confinement and degeneracy. Periods of quantum oscillations are even analytically expressed for one-dimensional case. Furthermore, similarities between functional behaviors of total occupancy variance and conventional density of states functions at Fermi level are discussed.  相似文献   

6.
We investigate the BCS-BEC crossover in three-dimensional degenerate Fermi gases in the presence of spin-orbit coupling (SOC) and Zeeman field. We show that the superfluid order parameter destroyed by a large Zeeman field can be restored by the SOC. With increasing strengths of the Zeeman field, there is a series of topological quantum phase transitions from a nontopological superfluid state with fully gapped fermionic spectrum to a topological superfluid state with four topologically protected Fermi points (i.e., nodes in the quasiparticle excitation gap) and then to a second topological superfluid state with only two Fermi points. The quasiparticle excitations near the Fermi points realize the long-sought low-temperature analog of Weyl fermions of particle physics. We show that the topological phase transitions can be probed using the experimentally realized momentum-resolved photoemission spectroscopy.  相似文献   

7.
The population of the Landau energy levels (from the zero level to the maximum level) is determined as a function of the quantizing magnetic field strength and the charged-particle concentration, for nonrelativistic proton and electron gases and relativistic electron gases.Brest State Pedagogical Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 21–27, January, 1994.  相似文献   

8.
The quadrupole hyperfine interaction in Li2ZrF6 and Li2HfF6 has been studied as a function of temperature. Both lattices are characterized by very similar low and symmetric electric field gradients at probe sites and no phase transitions were observed up to 770 K. On heating, between 700 and 830 K, the Li2ZrF6 undergoes chemical reactions which give rise to ZrO2 and then to Li3ZrF7 (high temperature α-phase) and Li2ZrO3. On cooling, below 750 K, the α→β transition in Li3 ZrF7 already reported is found to take place. An analogous behaviour is determined for Li2HfF6. Accordingly, the same decomposition steps and exstence of high and low temperature phases for Li3HfF7 can be inferred.  相似文献   

9.
Alhassid conjectured that the total energy of a harmonically trapped two-component Fermi gas with a short range interaction is a linear functional of the occupation probabilities of single-particle energy eigenstates. We confirm his conjecture and derive the functional explicitly. We show that the functional applies to all smooth (namely, differentiable) potentials having a minimum, not just harmonic traps. We also calculate the occupation probabilities of high energy states.  相似文献   

10.
We study the role of particle transport and evaporation on the phase separation of an ultracold, spin-polarized atomic Fermi gas. We show that the previously observed deformation of the superfluid paired core is a result of evaporative depolarization of the superfluid due to a combination of enhanced evaporation at the center of the trap and the inhibition of spin transport at the normal-superfluid phase boundary. These factors contribute to a nonequilibrium jump in the chemical potentials at the phase boundary. Once formed, the deformed state is highly metastable, persisting for times of up to 2?s.  相似文献   

11.
We present the design, implementation and characterization of a dual-species magneto-optical trap (MOT) for fermionic 6Li and 40K atoms with large atom numbers. The MOT simultaneously contains 5.2 × 109 6Li-atoms and 8.0 × 109 40K-atoms, which are continuously loaded by a Zeeman slower for 6Li and a 2D-MOT for 40K. The atom sources induce capture rates of 1.2 × 109 6Li-atoms/s and 1.4 × 109 40K-atoms/s. Trap losses due to light-induced interspecies collisions of ~65% were observed and could be minimized to ~10% by using low magnetic field gradients and low light powers in the repumping light of both atomic species. The described system represents the starting point for the production of a large-atom number quantum degenerate Fermi-Fermi mixture.  相似文献   

12.
For part I see DOI: 10.1016/j.physleta.2018.02.006. Size and density dependent quantum oscillations appear in Fermi gases under strong confinement and degeneracy conditions. We provide a universal recipe that explicitly separates oscillatory regime from non-oscillatory (stationary) one. A phase diagram representing stationary and oscillatory regimes on degeneracy-confinement space is proposed. Analytical expressions of phase transition interfaces are derived. The critical point, which separates entirely stationary and oscillatory regions, is determined and its dependencies on aspect ratios are examined for anisometric domains. Accuracy of the half-vicinity model and the phase diagram are verified through the quantum oscillations in electronic heat capacity and its ratio to entropy.  相似文献   

13.
Recent Feshbach-resonance experiments with 85Rb Bose-Einstein condensates have led to a host of unexplained results: dramatic losses of condensate atoms for an across-resonance sweep of the magnetic field, a collapsing condensate with a burst of atoms emanating from the remnant condensate, increased losses for decreasing interaction times, and coherent oscillations between remnant and burst atoms. Using a simple yet realistic mean-field model, we find that rogue dissociation, molecular dissociation to noncondensate atom pairs, is strongly implicated as the physical mechanism responsible for these observations.  相似文献   

14.
We examine the collisional behavior of two-component Fermi gases released at zero temperature from a harmonic trap. Using a phase-space formalism to calculate the collision rate during expansion, we find that Pauli blocking plays only a minor role for momentum changing collisions. As a result, for a large scattering cross section, Pauli blocking will not prevent the gas from entering the collisionally hydrodynamic regime. In contrast to the bosonic case, hydrodynamic expansion at very low temperatures is therefore not evidence for fermionic superfluidity.  相似文献   

15.
We investigate a two-species Fermi gas in which one species is confined in a two-dimensional plane (2D) or one-dimensional line (1D) while the other is free in the three-dimensional space (3D). We discuss the realization of such a system with the interspecies interaction tuned to resonance. When the mass ratio is in the range 0.0351相似文献   

16.
We investigate a mix-dimensional Fermi-Fermi mixtures in which one species is confined in two-dimensional (2D) space while the other is free in three-dimensional space (3D). We determine the superfluid transition temperature T c for the entire BCS-BEC crossover including the important effects of noncondensed pairs. We find that the transition temperature reduces while the imbalance of mass is increased or lattice spacing is reduced. In spin imbalance case, the stability of superfluid is sharply destroyed by increasing the polarization.  相似文献   

17.
We present a measurement of the potential energy of an ultracold trapped gas of 40K atoms in the BCS-BEC crossover and investigate the temperature dependence of this energy at a wide Feshbach resonance, where the gas is in the unitarity limit. In particular, we study the ratio of the potential energy in the region of the unitarity limit to that of a noninteracting gas, and in the T=0 limit we extract the universal many-body parameter beta. We find beta=-0.54_{-0.12};{+0.05}; this value is consistent with previous measurements using 6Li atoms and also with recent theory and Monte Carlo calculations. This result demonstrates the universality of ultracold Fermi gases in the strongly interacting regime.  相似文献   

18.
The work is concerned with the change of discrimination information during self-organization of Fermi and Bose gases. A new measure of the discrimination information which determines the degree of order of states in the open systems is presented. The I-theorem for a system with known effective Hamiltonian and a system whose Hamiltonian form is not defined is proved.  相似文献   

19.
In this introductory survey, we give an overview of the main physical problems and corresponding themes of research addressed in this Special Issue. We also briefly discuss some avenues of potential interest for future research in degenerate quantum gases.  相似文献   

20.
We investigate the effect of slow light propagating in a degenerate atomic Fermi gas. In particular we use slow light with an orbital angular momentum. We present a microscopic theory for the interplay between light and matter and show how the slow light can provide an effective magnetic field acting on the electrically neutral fermions, a direct analogy of the free electron gas in an uniform magnetic field. As an example we illustrate how the corresponding de Haas-van Alphen effect can be seen in a gas of neutral atomic fermions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号