首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
刘军  王琼  匡乐满  曾浩生 《中国物理 B》2010,19(3):30313-030313
We propose a scheme to engineer a non-local two-qubit phase gate between two remote quantum-dot spins. Along with one-qubit local operations, one can in principal perform various types of distributed quantum information processing. The scheme employs a photon with linearly polarisation interacting one after the other with two remote quantum-dot spins in cavities. Due to the optical spin selection rule, the photon obtains a Faraday rotation after the interaction process. By measuring the polarisation of the final output photon, a non-local two-qubit phase gate between the two remote quantum-dot spins is constituted. Our scheme may has very important applications in the distributed quantum information processing.  相似文献   

2.
邓洪亮  方细明 《中国物理快报》2007,24(11):3051-3054
In this paper we propose a new scheme of long-distance quantum cryptography based on spin networks with qubits stored in electron spins of quantum dots. By" conditional Faraday- rotation, single photon polarization measurement, and quantum state transfer, maximal-entangled Bell states for quantum cryptography between two long-distance parties are created. Meanwhile, efficient quantum state transfer over arbitrary" distances is obtained in a spin chain by" a proper choice of coupling strengths and using spin memory- technique improved. We also analyse the security" of the scheme against the cloning-based attack which can be also implemented in spin network and discover that this spin network cloning coincides with the optimal fidelity- achieved by" an eavesdropper for entanglement-based cryptography.  相似文献   

3.
We report the use of time-resolved Faraday rotation to induce and probe the polarization of nuclear spins within a set of quantum wells with varying background electron density. The electron density was controlled over a broad range by making use of structures of mixed type-I/type-II GaAs/AlAs quantum wells that spatially separate photoexcited electron–hole pairs. We find that the optically detected nuclear magnetic field decreases quasi-monotonically with increasing electron density. The likely factors responsible for this behavior are increased electron spin-lattice relaxation, increased electron spin delocalization, and dilution of the electron spin polarization.  相似文献   

4.
利用原子自旋效应能够实现超高灵敏度的惯性和磁场测量。一类操控原子自旋处于无自旋交换弛豫态的器件可以进行物理参数测量。碱金属气室为该类器件的敏感表头。碱金属原子密度与原子极化率是碱金属气室的重要参数,对研究原子自旋处于无自旋交换弛豫态有着重要的作用。光的偏振效应在量子计算和原子物理研究中发挥了重要作用。利用光的偏振效应能够实现对碱金属原子密度与原子极化率的检测。提出一种基于光偏振旋转效应的碱金属原子极化率测量方法。首先对碱金属气室加恒定磁场,利用激光作为检测光,根据光偏振旋转原理,检测通过气室的偏振光的法拉第旋转角,得到碱金属气室原子密度。然后将碱金属原子抽运,利用激光作为检测光,检测通过气室的偏振光的偏转角,得到碱金属原子极化率。该方法在测量原子极化率的过程中也测量了碱金属原子密度,实现利用一套系统测量两个重要参数,具有快速测量和高灵敏度等特点,简化了实验设备及过程。对两种偏转角进行仿真分析,得到该方法实验时检测激光波长变化对偏转角的影响,根据仿真图得到检测激光波长的可取范围,验证了该方法的可行性。最后分析激光器波长波动与磁场波动对其测量精度的影响,提出实验对激光器与磁场的要求。  相似文献   

5.
Faithful long-distance quantum teleportation necessitates prior entanglement distribution between two communicated locations. The particle carrying on the unknown quantum information is then combined with one particle of the entangled states for Bell-state measurements, which leads to a transfer of the original quantum information onto the other particle of the entangled states. However in most of the implemented teleportation experiments nowadays, the Bell-state measurements are performed even before successful distribution of entanglement. This leads to an instant collapse of the quantum state for the transmitted particle, which is actually a single-particle transmission thereafter. Thus the true distance for quantum teleportation is, in fact, only in a level of meters. In the present experiment we design a novel scheme which has overcome this limit by utilizing fiber as quantum memory. A complete quantum teleportation is achieved upon successful entanglement distribution over 967 meters in public free space. Active feed-forward control techniques are developed for real-time transfer of quantum information. The overall experimental fidelities for teleported states are better than 89.6%, which signify high-quality teleportation.  相似文献   

6.
By employing an auxiliary cavity, we investigate the possibility to implement the conditional phase flip (CPF) gate on two atoms confined in separate low-Q cavities by single-photon input-output process, based on the Faraday rotation. This indicates a universal quantum computing available with sophisticated cavity QED techniques. As examples, we carry out generation of cluster states of distant atomic qubits and accomplish a teleportation based on Bell-state measurement in low-Q cavities.  相似文献   

7.
By employing an auxiliary cavity, we investigate the possibility to implement the conditional phase flip (CPF) gate on two atoms confined in separate low-Q cavities by single-photon input-output process, based on the Faraday rotation. This indicates a universal quantum computing available with sophisticated cavity QED techniques. As examples, we carry out generation of cluster states of distant atomic qubits and accomplish a teleportation based on Bell-state measurement in low-Q cavities.  相似文献   

8.
滕利华  王霞 《物理学报》2011,60(5):57202-057202
利用二能级体系速率方程,推导了半导体中探测光探测到的法拉第旋转光谱的理论模型,发现电子-空穴对的复合对法拉第旋转信号随时间的衰减有重要影响,并利用该模型对GaAs量子阱中实验测得的法拉第旋转光谱进行拟合,得到GaAs量子阱材料中的电子自旋弛豫时间为73.5 ps,而直接利用单指数进行拟合得到的电子自旋弛豫时间仅为51.3 ps. 因此,直接利用单指数对法拉第旋转光谱进行拟合得到电子自旋弛豫时间的传统做法是不准确的. 关键词: 自旋弛豫时间 时间分辨法拉第旋转光谱 GaAs量子阱  相似文献   

9.
武莹  李锦芳  刘金明 《物理学报》2018,67(14):140304-140304
量子Fisher信息(QFI)是量子度量学中的一个重要物理量,可给出预估参数精度的最优值.本文研究如何引入弱测量和测量反转操作,来提高有限温环境下以Greenberger-Horne-Zeilinger态作为量子通道的隐形传态过程中的QFI.依据隐形传态过程中量子比特的传输情形,考虑了三种不同方案相应的QFI.首先,通过构造每种量子隐形传态方案的量子线路图,分析了QFI与推广振幅衰减噪声参数的变化关系.随后对各种方案中的受噪声粒子施加弱测量和测量反转操作,并对相应的部分测量参数进行优化,着重探讨了施加最优部分测量操作后QFI的改进量.结果表明,经过优化后的部分测量操作能有效提高有限温环境下量子隐形传态过程输出态的QFI;而且量子系统所处的环境温度越低,QFI的提高效果可越显著.  相似文献   

10.
We present a general method to construct a universal set of quantum gates using probabilistic teleportation as a basic primitive. The technique generalizes the teleportation method of gate construction to partially entangled quantum channels. Without recourse to local filtering or entanglement concentration, using local rotation and CNOT operations followed by measurements in the computational basis, one can construct many encoded quantum operations with unit fidelity but less than unit probability. The technique can also be applied to the construction of remote quantum gates that cannot be directly performed.  相似文献   

11.
We demonstrate that the superposition of light polarization states is coherently transferred to electron spins in a semiconductor quantum well. By using time-resolved Kerr rotation, we observe the initial phase of Larmor precession of electron spins whose coherence is transferred from light. To break the electron-hole spin entanglement, we utilized the big discrepancy between the transverse g factors of electrons and light-holes. The result encourages us to make a quantum media converter between flying photon qubits and stationary electron-spin qubits in semiconductors.  相似文献   

12.
The polarization of conduction electron spins due to an electrical current is observed in strained nonmagnetic semiconductors using static and time-resolved Faraday rotation. The density, lifetime, and orientation rate of the electrically polarized spins are characterized by a combination of optical and electrical methods. In addition, the dynamics of the current-induced spins are investigated by utilizing electrical pulses generated from a photoconductive switch. These results demonstrate the possibility of a spin source for semiconductor spintronic devices without the use of magnetic materials.  相似文献   

13.
Yan-Ling Li 《中国物理 B》2023,32(1):10303-010303
Quantum teleportation is designed to send an unknown quantum state between two parties. In the perspective of remote quantum metrology, one may be interested in teleporting the information that is encoded by physical parameters synthesized by quantum Fisher information (QFI). However, the teleported QFI is often destroyed by the unavoidable interaction between the system and the environment. Here, we propose two schemes to improve the teleportation of QFI in the non-Markovian environment. One is to control the quantum system through the operations of weak measurement (WM) and corresponding quantum measurement reversal (QMR). The other is to modify the quantum system based on the monitoring result of the environment (i.e., environment-assisted measurement, EAM). It is found that, in the non-Markovian environment, these two schemes can improve the teleportation of QFI. By selecting the appropriate strengths of WM and QMR, the environment noise can be completely eliminated and the initial QFI is perfectly teleported. A comprehensive comparison shows that the second scheme not only has a higher probability of success than the first one, but also has a significant improvement of the teleported QFI.  相似文献   

14.
We propose a scheme for a large-scale cluster state preparation of single-charged semiconductor quantum dots utilizing Faraday rotation. Without interaction between quantum dots, the exciton induced Faraday rotation could distribute the spatially separate quantum dots into a quantum network assisted by cavity QED. We obtain the corresponding parameters from the numerical simulation based on the input-output process for the required Faraday rotation and some discussion is made in view of experimental feasibility.  相似文献   

15.
We study the thermal entanglement and teleportation using quantum dot as the quantum channel. We firstly investigate the evolution of entanglement in the vertical quantum dot, then focus on the effects of the important parameters of the system on the teleported fidelity under different conditions. We obtain the critical temperature of suddenly dead entanglement. Based on Bell measurements in two subspaces, the isotropy and anisotropy subspaces, we can find that the anisotropy measurements always overmatch the isotropy ones. Moreover, we obtain the high-fidelity teleportation for quantum dot as quantum channel when the parameters are adjusted. The possible applications of quantum dot are expected in quantum teleportation  相似文献   

16.
The creation, coherent manipulation, and measurement of spins in nanostructures open up completely new possibilities for electronics and information processing, among them quantum computing and quantum communication. We review our theoretical proposal for using electron spins in quantum dots as quantum bits, explaining why this scheme satisfies all the essential requirements for quantum computing. We include a discussion of the recent measurements of surprisingly long spin coherence times in semiconductors. Quantum gate mechanisms in laterally and vertically tunnel-coupled quantum dots and methods for single-spin measurements are introduced. We discuss detection and transport of electronic EPR pairs in normal and superconducting systems.  相似文献   

17.
Coherent interactions between spins in quantum dots are a key requirement for quantum gates. We have performed pump-probe experiments in which pulsed lasers emitting at different photon energies manipulate two distinct subsets of electron spins within an inhomogeneous InGaAs quantum dot ensemble. The spin dynamics are monitored through their precession about an external magnetic field. These measurements demonstrate spin precession phase shifts and modulations of the magnitude of one subset of oriented spins after optical orientation of the second subset. The observations are consistent with results from a model using a Heisenberg-like interaction with μeV strength.  相似文献   

18.
量子无线广域网构建与路由策略   总被引:1,自引:0,他引:1       下载免费PDF全文
刘晓慧  聂敏  裴昌幸 《物理学报》2013,62(20):200304-200304
提出了一种基于多阶量子隐形传态的量子路由方案, 在量子移动终端之间没有共享纠缠对的情况下, 仍然可以完成量子态的无线传输. 该量子路由方案可以用来构建量子无线广域网, 其传输时延与所经过的链路距离和基站数目无关, 传输一个量子态所需的时间与采用量子隐形传态所需的时间相同. 因此, 从数据传输速率的观点来看, 该方案优于基于纠缠交换的量子路由方案. 关键词: 量子通信 多阶量子隐形传态 量子路由 量子无线广域网  相似文献   

19.
We propose deterministic and scalable schemes to realize quantum controlled phase gate between two distant atoms and implement entanglement swapping between two EPR pairs by means of cavity-assisted photon scattering. Due to cavity quantum electrodynamics and the atom selection rule, left circular polarized and right circular polarized single-photon pulse reflected from the cavity obtain different phase shifts, which yields giant Faraday rotation. It can be used to realize universal quantum gates and implement quantum information processing with current technology. Our schemes can work well even the cavity is in low-Q case.  相似文献   

20.
Optical absorption of circularly polarized light is well known to yield an electron spin polarization in direct band gap semiconductors. We demonstrate that electron spins can even be generated with high efficiency by absorption of linearly polarized light in InxGa(1-x)As. By changing the incident linear polarization direction we can selectively excite spins in both polar and transverse directions. These directions can be identified by the phase during spin precession using time-resolved Faraday rotation. We show that the spin orientations do not depend on the crystal axes suggesting an extrinsic excitation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号