首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Guo  SJ Clark  J Robertson 《J Phys Condens Matter》2012,24(32):325504, 1-325504, 8
The electronic and magnetic properties of the transition metal sesqui-oxides Cr(2)O(3), Ti(2)O(3), and Fe(2)O(3) have been calculated using the screened exchange (sX) hybrid density functional. This functional is found to give a band structure, bandgap, and magnetic moment in better agreement with experiment than the local density approximation (LDA) or the LDA+U methods. Ti(2)O(3) is found to be a spin-paired insulator with a bandgap of 0.22?eV in the Ti d orbitals. Cr(2)O(3) in its anti-ferromagnetic phase is an intermediate charge transfer Mott-Hubbard insulator with an indirect bandgap of 3.31?eV. Fe(2)O(3), with anti-ferromagnetic order, is found to be a wide bandgap charge transfer semiconductor with a 2.41?eV gap. Interestingly sX outperforms the HSE functional for the bandgaps of these oxides.  相似文献   

2.
Photoemission spectroscopy of Bi(111) reveals a small hexagonal two-dimensional Fermi surface (FS) associated with an electron band centered in the surface Brillouin zone. Along the hexagon the Fermi momentum k(F) ranges from 0.053 to 0.061 A(-1). Temperature dependent valence band spectra show an anisotropic energy gap Delta near the Fermi level. We find a transition temperature of about 75 K. At 11 K, the gap is Delta=4 meV at the corner and Delta=7.5 meV at the side of the hexagon. Arguments based on susceptibility chi(--> q) calculations of a hexagonal FS are used to discuss an incommensurate charge-density-wave (CDW) formation associated with a q(CDW)=0.106 A(-1).  相似文献   

3.
We suggest a model to explain the appearance of a high resistance high magnetic field charge-density-wave (CDW) phase, discovered by Graf et al. [Phys. Rev. Lett. 93, 076406 (2004)10.1103/PhysRevLett.93.076406] in (Per)(2)Pt(mnt)(2), where Per is perylene and mnt is maleonitriledithiolate molecules. In particular, we show that the Pauli spin-splitting effects improve the nesting properties of a realistic quasi-one-dimensional electron spectrum and, therefore, a high resistance Peierls CDW phase is stabilized in high magnetic fields. In low and very high magnetic fields, a periodic soliton wall superlattice (SWS) phase is found to be a ground state. We suggest experimental studies of the predicted phase transitions between the Peierls and SWS CDW phases in (Per)(2)Pt(mnt)(2) to discover a unique SWS phase.  相似文献   

4.
Exposing the (111) surface of the topological insulator Bi(2)Se(3) to carbon monoxide results in strong shifts of the features observed in angle-resolved photoemission. The behavior is very similar to an often reported "aging" effect of the surface, and it is concluded that this aging is most likely due to the adsorption of rest gas molecules. The spectral changes are also similar to those recently reported in connection with the adsorption of the magnetic adatom Fe. All spectral changes can be explained by a simultaneous confinement of the conduction band and valence band states. This is possible only because of the unusual bulk electronic structure of Bi(2)Se(3). The valence band quantization leads to spectral features which resemble those of a band gap opening at the Dirac point.  相似文献   

5.
The magnetic properties and electronic structure of (K,Tl)(y)Fe(1.6)Se(2) is studied using first-principles calculations. The ground state is checkerboard antiferromagnetically coupled blocks of the minimal Fe(4) squares, with a large block-spin moment ~11.2 μ(B). The magnetic interactions could be modeled with a simple spin model involving both the inter- and intrablock, as well as the nearest-neighbor and next-nearest-neighbor couplings. The calculations also suggest a metallic ground state except for y=0.8 where a band gap ~400-550 meV opens, showing an antiferromagnetic insulator ground state for (K,Tl)(0.8)Fe(1.6)Se(2). The electronic structure of the metallic (K,Tl)(y)Fe(1.6)Se(2) is highly three dimensional with unique Fermi surface structure and topology. These features indicate that the Fe-vacancy ordering is crucial to the physical properties of (K,Tl)(y)Fe(2-x)Se(2).  相似文献   

6.
An infrared-absorption band centered at 0.85 eV, which is below the big optical absorption at the charge-density-wave (CDW) gap energy of 1.85 eV, has been observed for semiconducting single crystalline Ba(1-x)KxBiO3. With substituting K for Ba, the spectral weight of the new band increases with x, while that of the CDW-gap excitation decreases. Since the impurity state with the K substitution is known to be nonmagnetic at low temperatures, Bi3+ the state with 6s2 electrons surrounded by the six Bi5+ ions forms a small bipolaron by losing a pair of electrons in the Rice-Sneddon model. The new band is assigned to a transition from the lower-Peierls band to a state of the bipolaronic point defect.  相似文献   

7.
We present the first direct study of charge density wave (CDW) formation in quasi-2D single layer LaTe2 using high-resolution angle resolved photoemission spectroscopy and low energy electron diffraction. CDW formation is driven by Fermi surface (FS) nesting, however, characterized by a surprisingly smaller gap ( approximately 50 meV) than seen in the double layer RTe2 compounds, extending over the entire FS. This establishes LaTe2 as the first reported semiconducting 2D CDW system where the CDW phase is FS nesting driven. In addition, the layer dependence of this phase in the tellurides and the possible transition from a stripe to a checkerboard phase is discussed.  相似文献   

8.
闫静  单磊  王越  肖志力  闻海虎 《中国物理 B》2008,17(6):2229-2235
Low-temperature specific heat in a dichalcogenide superconductor 2H-NbSe2 is measured in various magnetic fields. It is found that the specific heat can be described very well by a simple model concerning two components corresponding to vortex normal core and ambient superconducting region, separately. For calculating the specific heat outside the vortex core region, we use the Bardeen-Cooper Schrieffer (BCS) formalism under the assumption of a narrow distribution of the superconducting gaps. The field-dependent vortex core size in the mixed state of 2H-NbSe2, determined by using this model, can explain the nonlinear field dependence of specific heat coefficient γ(H), which is in good agreement with the previous experimental results and more formal calculations. With the high-temperature specific heat data, we can find that, in the multi-band superconductor 2H-NbSe2, the recovered density of states (or Fermi surface) below Tc under a magnetic field seems not to be gapped again by the charge density wave (CDW) gap, which suggests that the superconducting gap and the CDW gap may open on different Fermi surface sheets.  相似文献   

9.
We investigate the rare-earth polychalcogenide R2Te5 (R=Nd, Sm and Gd) charge-density-wave (CDW) compounds by optical reflectivity measurements. We obtain the optical conductivity through Kramers-Kronig transformation of the reflectivity spectra. From the real part of the optical conductivity we then extract the excitation energy of the CDW gap and estimate the fraction of the Fermi surface which is gapped by the formation of the CDW condensate. In analogy to previous findings on the related RTen (n=2 and 3) families, we establish the progressive closing of the CDW gap and the moderate enhancement of the metallic component upon chemically compressing the lattice.  相似文献   

10.
Hard x-ray photoemission spectroscopy (PES) of Cu core electronic states, with a probing depth of approximately 60 A, is used to show that the Zhang-Rice singlet feature is present in La2CuO4 but is absent in Nd2CuO4. Hole and electron doping in La(2-x)SrxCuO4 (LSCO) and Nd(2-x)CexCuO4 (NCCO) result in new well-screened features which are missing in soft x-ray PES. Impurity Anderson model calculations establish screening from doped states as its origin, which is strongly suppressed within 15 A of the surface. Complemented with x-ray absorption spectroscopy, the small chemical-potential shift in core levels (approximately 0.2 eV) are shown to be consistent with modifications of valence and conduction band states spanning the band gap (approximately 1 eV) upon hole and electron doping in LSCO and NCCO.  相似文献   

11.
Herein we demonstrate the epitaxial stabilization of single-crystalline (Gd(x)La(1-x))(2)O(3) films on n-GaAs (001) with a controlled lattice match. (Gd(x)La(1-x))(2)O(3) films have an in-plane epitaxial relationship with a twofold rotation on GaAs (001). Spectroscopic characterization by photoemission and absorption confirms that the band gap of (Gd(x)La(1-x))(2)O(3) film is approximately approximately 5.8eV. However, the conduction band offset is increased by the unpinned Fermi level of the n-GaAs in the (Gd(x)La(1-x))(2)O(3) film (x=0.97). The correlation of the crystalline property and the interfacial band offset by the electrical properties, as probed by capacitance and leakage current measurements, is also discussed.  相似文献   

12.
Junyu Zong 《中国物理 B》2022,31(10):107301-107301
As a special order of electronic correlation induced by spatial modulation, the charge density wave (CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning—tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the ($sqrt{7}$ × $sqrt{3}$) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe2} film. Combining the variable-temperature angle-resolved photoemission spectroscopic (ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts Δ1 and Δ2. The gap part Δ1 that closes around ~ 150 K is accompanied with the vanish of the ($sqrt{7}$ × $sqrt{3}$) CDW phase. While another momentum-dependent gap part Δ2 can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure Δ1 + Δ2, which suggests different forming mechanisms between the ($sqrt{7}$ × $sqrt{3}$) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe2} film as a two-dimensional (2D) material.  相似文献   

13.
We report an infrared study on 1T-TiSe(2), the parent compound of the newly discovered superconductor Cu(x)TiSe(2). Previous studies of this compound have not conclusively resolved whether it is a semimetal or a semiconductor-information that is important in determining the origin of its unconventional charge density wave (CDW) transition. Here we present optical spectroscopy results that clearly reveal that the compound is metallic in both the high-temperature normal phase and the low-temperature CDW phase. The carrier scattering rate is dramatically different in the normal and CDW phases and the carrier density is found to change with temperature. We conclude that the observed properties can be explained within the scenario of an Overhauser-type CDW mechanism.  相似文献   

14.
采用密度泛函理论对M-(Sm、Pr、Ga)掺杂锐钛矿型TiO2能带和电子性质进行了系统的理论研究. 计算结果表明,通过Sm和Pr的掺杂可以降低TiO2的带隙进而使其产生吸收边红移,通过Ga的掺杂能使带隙稍增加. 这主要是由于Sm和Pr的掺杂使Sm和Pr上的4f层电子与原子相邻O原子上的2p层电子相互作用,形成的杂质能级影响了Ti-O的能带结构,从而降低带隙,提高TiO2的可见光吸收性能.  相似文献   

15.
We present magneto-optical reflectivity results in the basal plane of the hexagonal MgB(2). The data were collected on a mosaic of MgB(2) single crystals with T(c)=38 K from the ultraviolet down to the far infrared as a function of temperature and magnetic field oriented along the c axis. In the far infrared, there is a clear signature of the superconducting gap with a gap ratio 2 Delta/k(B)T(c) approximately 1.2, well below the weak-coupling value. The gap is suppressed in an external magnetic field, which is a function of temperature. We extract the upper critical field H(c2) along the c axis. The temperature dependence of H(c2) is compatible with the Helfand-Werthamer behavior.  相似文献   

16.
CeTe3 is a layered compound where an incommensurate charge density wave (CDW) opens a large gap ( approximately 400 meV) in optimally nested regions of the Fermi surface (FS), whereas other sections with poorer nesting remain ungapped. Through angle-resolved photoemission, we identify bands backfolded according to the CDW periodicity. They define FS pockets formed by the intersection of the original FS and its CDW replica. Such pockets illustrate very directly the role of nesting in the CDW formation but they could not be detected so far in a CDW system. We address the reasons for the weak intensity of the folded bands, by comparing different foldings coexisting in CeTe3.  相似文献   

17.
We address a model study which includes the co-existence of the charge density wave (CDW) and ferromagnetic interactions in order to explain the colossal magnetoresistance (CMR) in manganites. The Hamiltonian consists of the ferromagnetic Hund's rule exchange interaction between eg and t2g spins, Heisenberg core spin interactions and the CDW interaction present in the eg band electrons. The core electron magnetization, induced eg electron magnetization and the CDW gap are calculated using Zubarev's Green's function technique and determined self-consistently. The effect of core electron magnetization and the CDW interaction on the induced magnetization as well as on the occupation number in the different spin states of the eg band electrons are investigated by varying the model parameters of the system like the CDW coupling, the exchange coupling, the Heisenberg coupling and the external field. It is observed that the induced magnetization exhibits re-entrant behaviour and exists within a narrow temperature range just below the Curie temperature. This unusual behaviour of the eg band electrons will throw some new insights on the physical properties of the manganite systems.  相似文献   

18.
We have investigated the optical conductivity spectra of La2-2xSr1+2xMn2O7 (0.3相似文献   

19.
帅永 《中国物理 B》2017,26(5):56301-056301
Structural, electronic, and magnetic behaviors of 5d transition metal(TM) atom substituted divacancy(DV) graphene are investigated using first-principles calculations. Different 5d TM atoms(Hf, Ta, W, Re, Os, Ir, and Pt) are embedded in graphene, these impurity atoms replace 2 carbon atoms in the graphene sheet. It is revealed that the charge transfer occurs from 5d TM atoms to the graphene layer. Hf, Ta, and W substituted graphene structures exhibit a finite band gap at high symmetric K-point in their spin up and spin down channels with 0.783 μB, 1.65 μB, and 1.78 μB magnetic moments,respectively. Ir and Pt substituted graphene structures display indirect band gap semiconductor behavior. Interestingly, Os substituted graphene shows direct band gap semiconductor behavior having a band gap of approximately 0.4 e V in their spin up channel with 1.5 μB magnetic moment. Through density of states(DOS) analysis, we can predict that d orbitals of 5d TM atoms could be responsible for introducing ferromagnetism in the graphene layer. We believe that our obtained results provide a new route for potential applications of dilute magnetic semiconductors and half-metals in spintronic devices by employing 5d transition metal atom-doped graphene complexes.  相似文献   

20.
A Cooper pair from a s-wave superconductor (S) entering a conventional charge density wave (CDW) below the Peierls gap dephases on the Fermi wavelength while one particle states are localized on the CDW coherence length ξCDW. It is thus practically impossible to observe a Josephson current through a CDW. The paths following different sequences of impurities interfere destructively, due to the different electron and hole densities in the CDW. The same conclusion holds for averaging over the conduction channels in the ballistic system. We apply two microscopic approaches to this phenomenon: (i) a Blonder, Tinkham, Klapwijk (BTK) approach for a single highly transparent S-CDW interface; and (ii) the Hamiltonian approach for the Josephson effect in a clean CDW and a CDW with non magnetic disorder. The Josephson effect through a spin density wave (SDW) is limited by the coherence length ξSDW, not by the Fermi wave-length. A Josephson current through a SDW might be observed in a structure with contacts on a SDW separated by a distance ξSDW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号