首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以MnO2为活性组分,Fe2O3为助剂,制备了以TiO2及ZrO2-TiO2为载体的整体式催化剂.考察了它们在不同温度焙烧后应用于富氧条件下,NH3选择性催化还原.(NH3-SCR)氮氧化物的低温反应性能和高温稳定性.用X射线衍射(XRD)实验、比表面积测定(BET)、储氧性能测定(OSC)及程序升温还原(H2-TPR)等方法对催化剂进行了表征.结果表明,以ZrO2-TiO2为载体的催化剂具有很好的高温热稳定性,并具有较高的比表面积和储氧能力.同时具有较强的氧化能力.催化剂的活性测试结果表明,以ZrO2-TiO2为载体的整体式锰基催化剂明显地提高了NH3-SCR反应的低温活性,具有良好的应用前景.  相似文献   

2.
以MnO2为活性组分, Fe2O3为助剂, 制备了以TiO2及ZrO2-TiO2为载体的整体式催化剂. 考察了它们在不同温度焙烧后应用于富氧条件下, NH3选择性催化还原(NH3-SCR)氮氧化物的低温反应性能和高温稳定性. 用X射线衍射(XRD)实验、比表面积测定(BET)、储氧性能测定(OSC)及程序升温还原(H2-TPR)等方法对催化剂进行了表征. 结果表明, 以ZrO2-TiO2为载体的催化剂具有很好的高温热稳定性, 并具有较高的比表面积和储氧能力, 同时具有较强的氧化能力. 催化剂的活性测试结果表明, 以ZrO2-TiO2为载体的整体式锰基催化剂明显地提高了NH3-SCR反应的低温活性, 具有良好的应用前景.  相似文献   

3.
垃圾催化燃烧的热重分析研究   总被引:1,自引:0,他引:1  
采用热重分析,结合机理分析的方法,探讨了不同催化剂对垃圾焚烧过程中着火性能和燃尽性能的影响。结果表明,催化剂对垃圾着火性能的提高主要是催化剂促进了垃圾中挥发性有机物的释放,使着火点提前;催化剂对垃圾燃尽性能的提高,主要作用机理是催化剂充当氧的载体,促进氧转移。提出了表征着火性能和燃尽性能的两个物理参数,并根据两个参数对催化剂进行排序和比较。催化剂影响着火性能大小进行排序:K2CO3> MnO2 > Na2CO3> CuO > MgO > TiO2 > Al2O3 > Fe2O3 > BaCO3> CaO;催化剂影响垃圾燃尽性能大小排序:Na2CO3>MgO> MnO2> K2CO3> BaCO3> CaO> Al2O3> CuO> Fe2O3> TiO2。  相似文献   

4.
乙醇既是一种被广泛使用的溶剂, 也大量存在于乙醇燃料车尾气中. 它是一种挥发性有机化合物(VOCs), 能直接参与光化学反应影响空气质量, 因此去除乙醇很有必要. 催化氧化法消除VOCs 是很有前景的技术, 其关键是催化剂的制备和筛选. 目前, 用于乙醇催化氧化的催化剂主要是贵金属催化剂(Pt, Pd, Rh, Au, Ag)和金属氧化物催化剂(Cu, Mn, Co, Fe),此外, 还有一些钙钛矿型催化剂. MnO2具有多种结构(α, β, γ和δ)和形貌(管状, 棒状, 球状和孔状等). 不同形貌和结构的MnO2具有不同的VOCs 催化氧化性能. 我们已经报道了介孔MnO2, 特别是三维有序介孔MnO2, 具有良好的乙醇催化氧化活性, 有一定的应用前景. 然而, KIT-6老化温度对介孔MnO2孔径的影响, 以及MnO2孔径对催化氧化乙醇活性的影响尚不清楚. 如果通过调整KIT-6老化温度改变介孔MnO2的孔径, 很有可能改善催化剂低温还原性, 氧物种和活性位等, 进而提高其催化性能. 本文以40, 100和150 ℃ 老化合成的KIT-6介孔硅为硬模板, 制备出不同的介孔MnO2催化剂, 分别记作Mn-40, Mn-100和Mn-150, 用于乙醇氧化反应中, 讨论了催化剂孔径对其活性的影响. 采用X 射线粉末衍射(XRD), 氮气吸附-脱附(BET), 扫描电子显微镜(SEM), 氢气程序升温还原(H2-TPR), 氧气程序升温脱附(O2-TPD), X 射线光电子能谱(XPS)等技术对催化剂进行了表征. XRD 广角结果表明, 各催化剂均具有软锰矿型MnO2晶相, 其中Mn-40催化剂存在少量Mn2O3晶相. XRD 小角和SEM结果表明, 各催化剂均为介孔材料, Mn-100催化剂的有序度和对称性最好, KIT-6老化温度的改变使Mn-40和Mn-150的有序度和对称性降低. BET 结果表明, Mn-40, Mn-100和Mn-150分别具有三孔, 双孔和单孔体系. 随着KIT-6老化温度的降低, KIT-6的孔径降低, 而介孔MnO2催化剂的孔径增加. XPS 结果表明, Mn-40因少量Mn2O3晶相的存在而具有较多的Mn3+阳离子和表面晶格氧物种, 能增加催化剂氧空位的数量, 有利于氧物种的吸附, 活化和迁移, 从而增强催化活性. TPR 和TPD表明, Mn-40催化剂具有良好的低温还原性, 它的氧物种容易在低温下脱附并参与氧化反应. 催化剂活性测试结果表明, 随着介孔MnO2催化剂的孔径增加, 其活性增加. 催化剂孔径和活性从大到小的顺序为Mn-40>Mn-100>Mn-150. 以老化温度为40 ℃的KIT-6模板制备的Mn-40催化剂, 具有较高的乙醇转化频率 (TOF), 120 ℃的TOF 为0.11 s-1. Mn-40催化剂具有良好的乙醇氧化催化活性归因于较大孔径, 其孔径呈三孔体系分布, 最大孔径分布在1.9, 3.4和6.6 nm 处, 三孔体系的形成是因为催化剂孔道的对称性和有序度降低. 此外, Mn-40催化剂具有良好的乙醇氧化催化活性也归因于由较多Mn3+阳离子引起的较多表面晶格氧物种和氧空位以及较好的低温还原性.  相似文献   

5.
MnO2/ZSM-5上臭氧协同催化去除甲醛的性能研究   总被引:1,自引:0,他引:1  
采用浸渍法制备了不同MnO2负载量的催化剂,用BET分析、X射线衍射等手段对其进行了分析,并考察了在MnO2/ZSM-5催化剂上臭氧协同催化去除甲醛的性能.结果显示:相对于单一的MnO2和ZSM-5,MnO2/ZSM-5复合催化剂具有更高的催化活性,其中10%MnO2/ZSM-5性能最佳,一次性去除效率可达到47%左右,制备所得到的催化剂有较强的稳定性,连续工作120h去除效率基本不变.  相似文献   

6.
本文采用水热法制备了MnO/氮掺杂石墨烯复合材料.作为非水锂空气电池的正极催化剂,该复合材料表现出了优异的电化学性能以及循环稳定性.在充放电电流密度为0.05 mA cm~(-2)时,其能量效率高达84.6%,远高于目前文献所报道的非贵金属催化剂的能量效率,也超过了基于贵金属的催化剂.其氧还原反应(ORR)和氧析出反应(OER)的过电势分别仅为0.11和0.41 V.扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明,所制备的MnO纳米颗粒能够均匀地分散在氮掺杂石墨烯的表面.密度泛函理论(DFT)计算揭示,MnO(100)面是主要的催化活性面,其理论ORR和OER的过电势分别仅为0.21与0.24 V,充放电电势差为0.45V,与实验结果0.52 V相当.  相似文献   

7.
石墨烯由单层碳原子组成,具有大的比表面积和超高的导电性,广泛应用于催化与储能领域.本工作结合石墨烯独特的物理化学性质和结构特性,采用原位氧化还原法,以KMnO4和石墨烯(GNs)为原料合成GNs-MnO2氧还原催化剂,通过X射线衍射(XRD)、拉曼光谱(Raman)、透射电镜(TEM)、热重(TG)、BET等分析测试技术研究了纳米GNs-MnO2复合材料的微观结构特征.结果表明,合成的MnO2纳米线直接生长在石墨烯的表面,增加了MnO2的比表面积,提高了催化剂的活性位点.电化学测试表明,合成的GNs-MnO2催化剂在碱性介质中电催化氧还原电位比纯MnO2的氧还原电位正移80 mV,电流提高了1.3倍,在燃料电池氧还原电催化中有一定的应用前景.  相似文献   

8.
大多数工业催化剂都是在稳定的操作条件下进行的,然而汽车尾气净化催化剂却被暴露在大气中,使用条件经常变化,尤其是空燃比(A/F)的变化,直接影响了对氧敏感的三效催化剂的氧化和还原性能[1].CeO2则是一种具有储氧/释氧能力的催化材料,它作为助剂加入三效催化剂中,可在贫况下储存氧(以Ce4+存在)利于NOx的还原,在富况下释放氧(以Ce3+存在),利于HC、CO的氧化,从而提高了催化剂的活性.然而,CeO2 的储氧性通常局限在表面上,当温度超过400℃以上时,其比表面积降低从而引起储氧性能急剧下降,直接影响催化剂的性能和寿命.  相似文献   

9.
含氯挥发有机物(CVOCs)广泛用于化工原料以及有机溶剂,由于其毒性大,难降解,直接排放可引起严重的空气污染问题,采用催化燃烧的技术可以实现CVOCs高效净化,其关键在于高活性和高稳定性的催化剂.CVOCs净化催化剂主要有负载型贵金属催化剂、(复合)氧化物催化剂和复合分子筛催化剂.我们以具有高稳定性的LaMnO3钙钛矿为研究对象,主要考察了不同制备方法对于氯乙烯催化燃烧性能的影响;并通过XRD,Raman,N2-吸附脱附,O2-TPD,H2-TPR,ICP-AES,XPS等表征方法研究催化剂的结构和物化性能.性能评价结果表明,MnO2虽具有良好的催化性能,但LaMnO3催化剂则具有更好的循环稳定性.同时,制备方法对LaMnO3催化剂上氯乙烯催化燃烧的性能有显著的影响,其活性高低的顺序为:溶胶凝-胶法(SG)>共沉淀法(CP)>硬模版剂法(HT)>水热法(HM),其中LaMnO3-SG催化剂在182℃时氯乙烯的转化率即可达到90%.XPS结果表明,不同的制备方法导致LaMnO3催化剂表面La和Mn的富集程度不同,并显著影响了催化剂表面Mn离子的价态、分布和氧空穴的数量.其中,LaMnO3-SG催化剂具有最高的表面Mn4+浓度,其对应的氯乙烯催化燃烧活性最高.而对于LaMnO3-HM催化剂,La(OH)3的生成导致其具有最高的表面La/Mn比(2.29)和最低的表面Mn4+浓度.由XPS计算氧空穴浓度可知,LaMnO3-SG催化剂氧空穴浓度(1.03)远高于LaMnO3-HM催化剂表面的氧空穴浓度(0.07),进而LaMnO3-SG在O2-TPD中表现出更高的O2脱附量.进一步分析可知Mn4+离子浓度与氧空穴浓度成正相关的关系,即:Mn4+离子浓度越高,则表面氧空穴浓度越高.而催化剂表面氧空穴浓度越高,则有利于氧在催化剂表面的吸附和活化,从而使得催化剂表面氧物种的浓度增加,这与O2-TPD结果一致.同时,制备方法对催化剂氧化还原性能也有显著的影响,由H2-TPR所得催化剂的耗氢量顺序为:LaMnO3-SG>LaMnO3-CP>LaMnO3-HT>LaMnO3-HM,这与它们催化活性的顺序一致.结合XPS和H2-TPR结果可知,催化剂表面Mn4+/Mn3+比例高,则催化剂的氧化还原能力也越强.以上分析表明,LaMnO3催化剂的催化活性与催化剂表面Mn4+浓度和氧空穴数量相关.具有较高的Mn4+浓度有利于氯乙烯在催化剂表面吸附;而氧空穴数量的增加有利于氧在催化剂表面的吸附和活化,从而提高氯乙烯催化燃烧的反应性能.  相似文献   

10.
CeO2的富氧性能对质子交换膜燃料电池阴极的影响   总被引:1,自引:1,他引:0  
应用溶胶法和浸渍法向质子交换膜燃料电池阴极Pt/C催化剂添加CeO2,透射电子显微镜(TEM)分析和循环伏安测试表明:对由上述两种方法制备的各含5%CeO2的Pt/C催化剂,其粒径、形态分布以及CeO2在催化剂表面的覆盖度都不相同.单电池测试结果发现,二氧化铈的富氧作用表现明显,在以溶胶法制得的CeO2-Pt/C催化剂中,3%CeO2含量的催化剂呈现最佳的性能,而由浸渍法制得的CeO2-Pt/C,则以1%CeO2含量的性能最好,但对比之下,不如溶胶法制备的含3%CeO2的催化剂.  相似文献   

11.
采用脉冲微波辅助化学还原法制备了钴-聚吡咯-碳载Pt催化剂(Pt/Co-PPy-C),并将其作为阴极催化剂,组装单电池。考察了电池运行温度和氢气/空气计量比对单电池性能的影响,并与商业Pt/C催化剂进行了耐久性实验比较。 结果表明,运行温度为70 ℃,氢气与空气的计量比为1.2:2.5时单电池性能最佳。600 mA/cm2恒电流稳定运行150 h耐久性测试中,以Pt/Co-PPy-C为阴极催化剂的单电池平均电压衰退率为0.119 mV/h,是商业Pt/C催化剂的26%。耐久性测试前后,单电池的阴极电荷传递阻抗为7.176和8.767 Ω,均比商业Pt/C催化剂阻抗小;Pt颗粒粒径从2.46 nm增长到3.18 nm,均小于商业Pt/C催化剂的粒径。这表明,以Pt/Co-PPy-C催化剂为阴极催化剂制备的单电池性能优良,在质子交换膜燃料电池中有广泛的应用前景。  相似文献   

12.
The development of alternative electrocatalysts exhibiting high activity in the oxygen reduction reaction (ORR) is vital for the deployment of large-scale clean energy devices, such as fuel cells and zinc–air batteries. N-doped carbon materials offer a promising platform for the design and synthesis of electrocatalysts due to their high ORR activity, high surface area, and tunable porosity. In this study, materials in which MnO nanoparticles are entrapped in N-doped mesoporous carbon (MnO/NC) were developed as electrocatalysts for the ORR, and their performances were evaluated in zinc–air batteries. The obtained carbon materials had large surface area and high electrocatalytic activity toward the ORR. The carbon compounds were fabricated by using NaCl as template in a one-pot process, which significantly simplifies the procedure for preparing mesoporous carbon materials and in turn reduces the total cost. A primary zinc–air battery based on this material exhibits an open-circuit voltage of 1.49 V, which is higher than that of conventional zinc–air batteries with Pt/C (Pt/C cell) as ORR catalyst (1.41 V). The assembled zinc–air battery delivered a peak power density of 168 mW cm−2 at a current density of about 200 mA cm−2, which is higher than that of an equivalent Pt/C cell (151 mW cm−2 at a current density of ca. 200 mA cm−2). The electrocatalytic data revealed that MnO/NC is a promising nonprecious-metal ORR catalyst for practical applications in metal–air batteries.  相似文献   

13.
李赏  周芬  陈磊  潘牧 《电化学》2016,22(2):129
质子交换膜燃料电池的商业化应用迫切要求降低其Pt载量. 本文通过Pt/C氧还原电极的动力学模型计算,研究了Pt/C电极中的氧分布、生成电流以及满足实际应用的最小Pt载量. 结果表明:燃料电池Pt/C电极,阴极产生严重浓差极化的催化层厚度为40mm;功率密度达到1.4 W•cm-2(2.1 A•cm-2@0.67 V)的电池性能需要3mm左右的Pt/C阴极催化层,阴极Pt载量为0.122 mg•cm-2,即可使膜电极的阴极铂用量低于0.087 g•kW-1.  相似文献   

14.
直接甲醇燃料电池性能   总被引:8,自引:0,他引:8  
采用商品Pt-Ru/C和Pt/C催化剂制备成甲醇阳极和氧阴极,Nafion-115为固体电解质膜,组装成面积为9cm^2单电池,研究了电池在放电运转过程中各种操作条件,如温度、氧气压力,甲醇浓度等对电池性能的影响,并考察了电池室温放电性能随时间的变化,发现增加电池的温度和 氧气压力均可明显提高电池性能,在合适的甲醇学及氧气压力下电池在室温具有一定的稳定放电性能。  相似文献   

15.
Polymer stabilization proved to be a promising approach to increase the catalytic performance of common platinum/carbon based cathode catalysts (Pt/C) used in polymer electrolyte membrane fuel cells (PEMFCs). Platinum and polyaniline composite catalysts (Pt/C/PANI) were prepared by combining chemical polymerization reactions with anion exchange reactions. Electrochemical ex-situ characterizations of the decorated Pt/C/PANI catalysts show high catalytic activity toward the oxygen reduction reaction (ORR) and, more importantly, a significant enhanced durability compared to the undecorated Pt/C catalyst. Transmission electron microscopy (TEM) investigations reveal structural benefits of Pt/C/PANI for ORR catalysis. All studies confirm high potential of Pt/C/PANI for practical fuel cell application.  相似文献   

16.
直接乙醇燃料电池初探   总被引:10,自引:0,他引:10  
采用商品化的PtRu/C和Pt/C分别作乙醇阳电极和氧气阴电极的催化剂 ,Nafion 115膜作固体电解质 ,组装成面积为 9cm2 的单池 .考察了电池温度、氧气压力、乙醇浓度及流量等对电池性能的影响 .实验结果表明在电池温度为 85℃ ,乙醇浓度为 1.0mol/L ,流量为 0 .5mL/min ,氧气压力为 0 .5MPa ,流量为 6 8mL/min条件下 ,电池开路电压为 0 .6 0 8V ,电流密度 5 0mA/cm2 时的放电端电压为 0 .32 9V ,电池最大功率密度为 19.2 5mW /cm2  相似文献   

17.
Effect of methanol on the reduction kinetics of oxygen on highly dispersed catalysts 60Pt/C (HiSPEC 9100), 40Pt/carbon nanotubes, and CoFe/carbon nanotubes for the cathode of a direct methanol-oxygen fuel cell was studied. It was shown that the CoFe/carbon nanotubes catalyst surpasses the platinum systems in tolerance to the alcohol. It was found that the tolerance of the cathode catalyst strongly affects the current–voltage characteristics of the fuel cell, which is the principal result of the study and constitutes its scientific novelty. The maximum power density of an alkaline methanol-oxygen fuel cell with nonplatinum cathode (260 mW cm–2) exceeds the characteristics of similar fuel cells with platinum cathode catalysts, both obtained in the present study and described in the literature, which points to the practical importance of the study.  相似文献   

18.
The characteristics of low-temperature hydrogen–oxygen (air) fuel cell (FC) with cathodes based on the 50 wt % PtCoCr/C and 40 wt % Pt/CNT catalysts synthesized on XC72 carbon black and carbon nanotubes (CNT) are compared with the characteristics of commercial monoplatinum systems 9100 60 wt % Pt/C and 13100 70% Pt/C HiSPEC. It is shown that the synthesized catalysts exhibit a high mass activity, which is not lower than that of commercial Pt/C catalysts, a high selectivity with respect to the oxygen reduction to water, and a significantly higher stability. The characteristics of PtCoCr/C and Pt/CNT were confirmed by testing in the hydrogen—oxygen FCs. However, when air was used at the cathode, especially in the absence of excessive pressure, a voltage of FC with the cathode based on PtCoCr/XC72 is lower as compared with the commercial systems. Probably, this is associated with the transport limitations in the structure of trimetallic catalyst synthesized on XC72 carbon black due to the absence of mesopores. This drawback was eliminated to a large extent by raising the volume of mesopores as a result of application of mixed support (XC72 + CNT) and the use of only CNT for the synthesis of the monoplatinum catalyst. However, this did not eliminate another drawback, namely, a low platinum utilization coefficient in the cathode active layer as compared with that measured under the model conditions in the 0.5 M Н2SO4 solution. Therefore, further research is required to improve the structure of the catalytic systems, which are synthesized both on carbon black and nanotubes, while maintaining their high stability and selectivity.  相似文献   

19.
Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells(PEMFCs). Electrochemical results and single cell tests show that an enhanced activity for the oxygen reduction reaction(ORR) is obtained for the Pt/WO3/C catalyst compared with Pt/C. The higher catalytic activity might be ascribed to the improved Pt dispersion with smaller particle sizes. The Pt/WO3/C catalyst also exhibits a good electrochemical stability under potential cycling. Thus, the Pt/WO3/C catalyst can be used as a potential PEMFC cathode catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号