首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The optimal parameters for the largest band gap were investigated in three typical phononic crystal strip waveguides. Single cavity mode was created inside the band gap region by proper design of a defect. The band structures and the displacement distributions were discussed with the variation of the defect. Results show possibilities to guide extremely slow phonon cavity mode in strip waveguide with chosen displacement components, frequencies and symmetries.  相似文献   

2.
We report on the design, fabrication, and characterization of temperature insensitive strip silicon-on-insulator racetrack resonators. The influence of various parameters, such as waveguide width, waveguide height, ring radius, coupling length, ring gap, and operating wavelength, on temperature-dependent wavelength shift is examined. A resonant wavelength shift of 0.2 pm/K at a 1550 nm wavelength is measured for 335 nm × 220 nm waveguides. A significant reduction of waveguide propagation losses, improved ring Q value, and higher extinction ratio are obtained after overlaying the silicon waveguides with a polymer cladding.  相似文献   

3.
A theory of photonic crystal (PhC) slabs is described, which relies on an expansion in the basis of guided modes of an effective homogeneous waveguide and on treating the coupling to radiative modes and the resulting losses by perturbation theory. The following applications are discussed for the case of a high-index membrane: gap maps for photonic lattices in a waveguide; exciton–polariton states, when the PhC slab contains a quantum well with an excitonic resonance; propagation losses of line-defect modes in W1 waveguides, also in the presence of disorder; the quality factors of photonic nanocavities. In particular, we predict that disorder-induced losses below 0.2 dB/mm can be achieved in state-of-the-art samples by increasing the channel width of W1 waveguides.  相似文献   

4.
In this paper, we report a photonic integrated circuit (PIC), which consisting of a photonic crystal (PC) coupled by a dielectric waveguide to an optical fibre. The PC consists of a sequence of dielectric rods based on a silicon (Si) strip on a silicon dioxide (SiO2) layer. The finite-difference time-domain (FDTD) method is reviewed and then used to model and predict the optical and the geometrical parameters used to design the fundamental elements of the PIC. The air gap width and the etching depth of the grooves are characterised. The coupling between the PC, and traditional dielectric waveguides is studied and coupling efficiency is evaluated. Diffractive losses are shown to affect strongly the performances of the proposed PIC. In addition, the effect of the air gap width on the diffractive losses and the coupling efficiency between successive neighbouring silicon sections is analysed. The field profile distribution in the structure is calculated and performed. The effects of an incorporated defect are studied, showing a high quality factor.  相似文献   

5.
A design of cascaded photonic crystal waveguide is proposed in this paper inspired by the work of Tang et al. [D. Tang, L. Chen, W. Ding, Appl. Phys. Lett. 89 (2006) 131120]. In contrast to a conventional waveguide source, a plane wave source is applied in the current design. We show that an efficient guide mode in the photonic band gap can be achieved. The same idea also works for a slight variation by defects introduction in the photonic crystal. Finally, the strong coupling effect present in the cascaded waveguides is demonstrated by an analogy with photonic quantum wells.  相似文献   

6.
We obtain the photonic bands and intrinsic losses for the triangular lattice three-component two- dimensional (2D) photonic crystal (PhC) slabs by expanding the electromagnetic field on the basis of waveguide modes of an effective homogeneous waveguide. The introduction of the third component into the 2D PhC slabs influences the photonic band structure and the intrinsic losses of the system. We examine the dependences of the band gap width and gap edge position on the interlayer dielectric constant and interlayer thickness. It is found that the gap edges shift to lower frequencies and the intrinsic losses of each band decrease with the increasing interlayer thickness or dielectric constant. During the design of the real PhC system, the effect of unintentional native oxide surface layer on the optical properties of 2D PhC slabs has to be taken into consideration. At the same time, intentional oxidization of macroporous PhC structure can be utilized to optimize the design.  相似文献   

7.
Changes in the spectra of femtosecond laser pulses propagating through fibers with a cladding having the structure of a two-dimensional photonic crystal are experimentally investigated. It is demonstrated that the waveguide properties of defect modes of photonic-crystal fibers provide an opportunity to considerably increase the efficiency of spectral broadening of short laser pulses as compared with conventional fibers.  相似文献   

8.
A new variety of the “soliton management” in heterogeneous optical media is proposed. The system is composed as a periodic chain of nonlinear fibers with negligible intrinsic group-velocity dispersion (GVD), alternating with sections of unchirped fiber Bragg gratings (FBGs) operating in the reflection regime. Losses due to incomplete reflection are compensated by linear amplifiers. The model may apply to fiber-optic telecommunication links with periodically installed FBG modules, and it may be used for the design of laser setups. By means of extended simulations, we identify small regions in the underlying parameter space where this model, featuring the periodic separation of the Kerr nonlinearity and FBG-induced GVD (hence the name of the “split-step” system), supports stable transmission of RZ (return-to-zero) pulses, i.e., quasi-solitons. The effect of nonzero fiber’s GVD on the stable transmission regime is considered too. Moderately unstable (partly usable) transmission regimes are found in larger regions of the parameter space; they may be of two different types, with the average nonlinearity either undercompensating or overcompensating the GVD. Interactions between the stable RZ pulses are also studied, leading to the identification of a minimum separation between them necessary for the suppression of interaction effects.  相似文献   

9.
A genetic algorithm is combined with a fully vectorial finite-element solver to design photonic-crystal fibers (PCFs) for a broadband dispersion compensation in a generic stretcher-compressor system of an ytterbium fiber laser. Two types of PCFs are compared in terms of their dispersion-compensation capability, optical nonlinearity, and confinement loss. Fibers of the first type are standard PCFs where a solid core is surrounded by a triangular uniform lattice of identical air-holes. In PCFs of the second type, the solid core is surrounded by a dual-scale cladding, where the inner part comprises air-holes of different diameters, while the outer cladding consists of large-diameter air-holes. Second-type PCFs are shown to provide a much more accurate dispersion compensation. The influence of fiber-fabrication tolerances on the precision of dispersion compensation in short-pulse fiber laser systems is examined.  相似文献   

10.
We measure the group delay in an on-chip photonic-crystal device with two resonators side coupled to a waveguide. We demonstrate that such a group delay can be controlled by tuning either the propagation phase of the waveguide or the frequency of the resonators.  相似文献   

11.
A binary mixture of ferroelectric liquid crystals (FLCs) was used for the design of a channel waveguide. The FLCs possess two important functionalities: a chromophore with a high hyperpolarizability and photoreactive groups. The smectic liquid crystal is aligned in layers parallel to the glass plates in a sandwich geometry. This alignment offers several advantages, such as that moderate electric fields are sufficient to achieve a high degree of polar order. The arrangement was then permanently fixed by photopolymerization which yielded a polar network possessing a high thermal and mechanical stability which did not show any sign of degradation within the monitored period of several months. The linear and nonlinear optical properties have been measured and all four independent components of the nonlinear susceptibility tensor have been determined. The off-resonant d-coefficients are remarkably high and comparable to those of the best known inorganic materials. The alignment led to an inherent channel waveguide for p-polarized light without additional preparation steps. The photopolymerization did not induce scattering sites in the waveguide and the normalized losses were less than 2 dB/cm. The material offers a great potential for the design of nonlinear optical devices such as frequency doublers of low-power laser diodes. Received 7 March 2000  相似文献   

12.
Here we show that the emergence of scaling laws in inanimate (geophysical) flow systems is analogous to the emergence of allometric laws in animate (biological) flow systems, and that features of evolutionary “design” in nature can be predicted based on a principle of physics (the constructal law): “For a finite-size flow system to persist in time (to live) it must evolve in such a way that it provides easier and easier access to its currents”, meaning that the configuration and function of flow systems change over time in a predictable way that improves function, distributes imperfection, and creates geometries that best arrange high and low resistance areas or volumes. This theoretical unification of the phenomena of animate and inanimate flow design generation is illustrated with examples from biology (lung design, animal locomotion) and the physics of fluid flow (river basins, turbulent flow structure, self-lubrication). The place of this design-generation principle as a self-standing law in thermodynamics is discussed. Natural flow systems evolve by acquiring flow configuration in a definite direction in time: existing configurations are replaced by easier flowing configurations.  相似文献   

13.
We introduce new special ellipsoidal confocal coordinates in n (n ≥ 3) and apply them to the geodesic problem on a triaxial ellipsoid in 3 as well as the billiard problem in its focal ellipse.

Using such appropriate coordinates we show that these different dynamical systems have the same common analytic first integral. This fact is not evident because there exists a geometrical spatial gap between the geodesic and billiard flows under consideration, and this separating gap just “veils” the resemblance of the two systems.

In short, a geodesic on the ellipsoid and a billiard trajectory inside its focal ellipse are in a “veiled assonance”—under the same initial data they will be tangent to the same confocal hyperboloid. But this assonance is rather incomplete: the dynamical systems in question differ by their intrinsic action angle-variables, thereby the different dynamics arise on the same phase space (i.e. the same phase curves in the same phase space bear quite different rotation numbers).

Some results of this work have been published before in Russian (Tabanov, 1993) and presented to the International Geometrical Colloquium (Moscow, May 10–14, 1993) and the International Symposium on Classical and Quantum Billiards (Ascona, Switzerland, July 25–30, 1994).  相似文献   


14.
A study of the distribution of conductances, P(g), for quasi-one-dimensional (multichain) pseudorandom systems is here presented. We focus on the crossover between the metallic ( ) and the insulating (〈g〉∼0) regimes with reference to the case of “cosine” and “tangent” pseudorandom potentials. The results are compared with those obtained for the truly random disordered systems with the same geometry. A rich variety of shapes of P(g) is thus evidenced in the crossover-transport regime and, in the case of identical interacting chains composing the device, we have shown that the conductance distribution of the system can be obtained from the results for the single pseudorandom chain.  相似文献   

15.
二维正方晶格光子晶体禁带特性   总被引:3,自引:3,他引:0  
张杰 《光谱实验室》2012,29(2):1192-1194
基于平面波展开法,以碳化硅构成二维正方晶格光子晶体,数值模拟了TE模、TM模二维光子晶体的禁带特性,结果表明,TE模更容易形成光子禁带。同时设计了以碳化硅构成二维正方晶格光子晶体波导,数值模拟了TE模、TM模波导的传输特性和禁带特性,结果表明,TE模构成的波导电磁波能够较好的传播,它们的光子禁带都没有出现。研究结论为光子晶体波导器件的开发提供参考。  相似文献   

16.
基于光子晶体耦合波导的宽带慢光研究   总被引:2,自引:1,他引:1  
张伟  王智勇  王文超  杨辉  邱琪 《光学学报》2012,32(2):213001-173
提出了在完整三角晶格光子晶体中引入两线缺陷构成的耦合型波导结构。通过分析谱带形对不同结构参数的依赖关系,在最优化的光子晶体耦合波导中,找到了一种独特的、群速近似为零的谱带。通过对波导宽度的啁啾实现了不同频率光的色散补偿,最终得到了带宽为13.24nm、平均群折射率为28的宽带理想慢光,并进一步采用二维时域有限差分(FDTD)算法进行了验证。数值分析结果表明,高斯脉冲在耦合波导中传输后的相对时域展宽低于10%。  相似文献   

17.
In this paper we report on the modeling of low index contrast silica glass 90° bend ridge waveguides assisted by a two-dimensional photonic crystal. A three-dimensional finite-difference time-domain (3D-FDTD) based computer code has been used in order to evaluate the transmission characteristics and the in-plane losses of the investigated waveguides having different values of the bend radius. The performance of the bend structure surrounded by two-dimensional photonic crystals is compared to that of a classical bend ridge waveguide and the phenomenon of light confinement is critically analyzed. The device design is optimized for quasi-TM polarization at the wavelength of 1.3 μm.  相似文献   

18.
A technique to produce low loss small angle bends in photonic crystal waveguides is presented. The technique consists of bridging parallel input and output waveguide segments with an inclined waveguide region of the same basic design that has a lateral dielectric shift. Results are presented for waveguides produced by enlarging the silicon gap along the central line, separating air holes in a square array photonic crystal for the TE polarization and an operating wavelength of λo = 1.55 μm. This low loss waveguide bending technique is applied to the design of Y branch and Mach–Zehnder photonic crystal structures. Simulation of the performance of the dielectric structures is achieved using 2-D FDTD, similar results are anticipated when applied to 3-D waveguide configurations and for other photonic crystal layouts.  相似文献   

19.
The ways of achieving limiting waveguide enhancement of nonlinear-optical processes in microstructure and photonic-crystal fibers are studied. The waveguide enhancement of nonlinear-optical processes is shown to be physically limited because of the competition of diffraction and refractive-index-step radiation confinement. In the case of the limiting refractive-index step values for fused silica fibers, the maximum waveguide enhancement of nonlinear-optical processes is achieved with submicron fiber core diameters. The maximum waveguide enhancement of coherent anti-Stokes Raman scattering in a hollow microstructure fiber relative to the regime of tight focusing is shown to scale as λ 2a4 with radiation wavelength λ, the inner fiber radius a, and the magnitude of radiation losses α.  相似文献   

20.
A theoretical model for determining the optical losses in the three-mirror, multiple-pass cavity of a transversely rf-excited planar waveguide CO2 laser with an exit mirror of arbitrary radius of curvature has been developed.__________Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 2, pp. 198–201, March–April, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号