首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) forms nonaqueous microemulsions with p-xylene, with the aid of the nonionic surfactant TX-100. The phase behavior of the ternary system is investigated, and three microregions of the microemulsions-ionic liquid-in-oil (IL/O), bicontinuous, and oil-in-ionic liquid (O/IL)-are identified by conductivity measurements, according to percolation theory. On the basis of a phase diagram, a series of IL/O microemulsions are chosen and characterized by dynamic light scattering (DLS). The size of aggregates increases on increasing the amount of added polar component (bmimBF(4)), which is a similar phenomenon to that observed for typical water-in-oil (W/O) microemulsions, suggesting the formation of IL/O microemulsions. The microstructural characteristics of the microemulsions are investigated by FTIR and 1H NMR spectroscopy. The results indicate that the interaction between the electronegative oxygen atoms of the oxyethylene (OE) units in TX-100 and the electropositive imidazolium ring may be the driving force for the solubilization of bmimBF4 into the core of the TX-100 aggregates. In addition, the micropolarity of the microemulsions is investigated by using methyl orange (MO) as a UV/Vis spectroscopic probe. A relatively constant polarity of the microemulsion droplets is obtained in the IL microemulsion. Finally, a plausible structure for the IL/O microemulsion is presented.  相似文献   

2.
The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) can form nonaqueous microemulsions with benzene by the aid of nonionic surfactant TX-100. The effect of water on ionic liquid-in-oil (IL/O) microemulsions was studied, and it was shown that the addition of small amount of water to the IL microemulsion contributed to the stability of microemulsion and thus increased the amount of solubilized bmimBF4 in the microemulsion. The conductivity measurements also showed that the attractive interactions between IL microdroplets were weakened, that is, the IL/O microemulsion becomes more stable in the present of some water. Fourier transform IR was carried out to analyze the states of the added water, and the result showed that these water molecules mainly behaved as bound water and trapped water, indicating that the water molecules are located in the palisade layers of the IL/O microemulsion. Furthermore, 1H NMR and 19F NMR spectra suggested that the added water molecules built the hydrogen binding network of imidazolium cations and H2O, BF4- anion and H2O, and at the same time the electronegative oxygen atoms of the oxyethylene units of TX-100 and water in the palisade layers, which made the palisade layers more firm and thus increased the stability of the microemulsion. The study can help in further understanding the formation mechanism of microemulsions. In addition, the characteristic solubilization behavior of the added water can provide an aqueous interface film for hydrolysis reactions and therefore may be used as an ideal medium to prepare porous or hollow nanomaterials.  相似文献   

3.
Ionic liquid based microemulsions were characterized by absorption solvatochromic shifts, (1)H NMR and kinetic measurements in order to investigate the properties of the ionic liquid within the restricted geometry provided by microemulsions and the interactions of the ionic liquid with the interface. Experimental results show a significant difference between the interfaces of normal water and the new ionic liquid microemulsions. Absorption solvatochromic shift experiments and kinetic studies on the aminolysis of 4-nitrophenyl laurate by n-decylamine show that the polarity at the interface of the ionic liquid in oil microemulsions (IL/O) is higher than at the interface of water in oil microemulsions (W/O) despite the fact that the polarity of [bmim][BF(4)(-)] is lower than the polarity of water. (1)H NMR experiments showed that an increase in the ionic liquid content of the microemulsion led to an increase in the interaction between [bmim][BF(4)(-)] and TX-100. The reason for the higher polarity of the microemulsions with the ionic liquid can be explained in terms of the incorporation of higher levels of the ionic liquid at the interface of the microemulsions, as compared to water in the traditional systems.  相似文献   

4.
The interaction of ionic liquid with water in 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])/Triton X-100 (TX-100)/H2O ternary microemulsions, i.e., "[bmim][PF6]-in-water" microregions of the microemulsions, has been studied by the dynamics of solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 151 (C-151). The variation of the time constants of solvent relaxation of C-153 is very small with an increase in the [bmim][PF6]/TX-100 ratio (R). The rotational relaxation time of C-153 also remains unchanged in all micremulsions of different R values. The invariance of solvation and rotational relaxation times of C-153 indicates that the position of C-153 remains unaltered with an increase in R and probably the probe is located at the interfacial region of [bmim][PF6] and TX-100 in the microemulsions. On the other hand, in the case of C-151, with an increase in R the fast component of the solvation time gradually increases and the slow component gradually decreases, although the change in solvation time is small in comparison to that of microemulsions containing common polar solvents such as water, methanol, acetonitrile, etc. The rotational relaxation time of C-151 increases with an increase in R. This indicates that with an increase in the [bmim][PF6] content the number of C-151 molecules in the core of the microemulsions gradually increases. In general, the solvent relaxation time is retarded in this room temperature ionic liquid/water-containing microemulsion compared to that of a neat solvent, although retardation is very small compared to that of the solvent relaxation time of the conventional solvent in the core of the microemulsions.  相似文献   

5.
The phase behavior of toluene/Triton X-100 (TX-100)/1-butyl-3-methylimidazolium hexafluorophosphate([bmim][PF6]) was studied. It was demonstrated that the single-phase microemulsion area covered about 75% of the phase diagram at 25 °C. Electrical conductivities of the system with different w ([bmim][PF6]-to-TX-100 molar ratio) values were determined, and the results were used to locate the sub-regions of the single-phase microemulsion. The results showed that a transform from [bmim][PF6]-in-oil ([bmim][PF6]/O) microstructure via a bicontinuous region to an oil-in-[bmim][PF6] (O/[bmim][PF6]) microstructure occurred with the increase of Φ (weight fraction of TX-100 and [bmim][PF6] in the system). The aggregate size of the reverse microemulsions of [bmim][PF6]/O was determined using small-angle X-ray scattering. The results showed that the size of the reverse microemulsions depended markedly on the w values.  相似文献   

6.
The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400 ps and 1.10 ns.  相似文献   

7.
The effect of a common polymer, polyethylene glycol with molecular weight of 400 (PEG-400) on the microstructure of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4)/Triton X-100/cyclohexane ionic liquid (IL) reverse microemulsion has been investigated. The addition of PEG-400 leaded to the linear increase of the microemulsion droplet size, in accordance with the observation of dispersed phase, showing that PEG-400 was only solubilized into the polar interior of the IL microemulsions. FTIR spectroscopic analysis indicated that the addition of PEG-400 decreased the electrostatic interaction between the oxygen atoms of OE units and the positive electrical charged imidazolium cation of bmimBF4. At the same time, the oxygen atoms of PEG-400 can also interact with the imidazolium cation. These results suggested that small amounts of PEG-400 entered the palisade layers of the IL microemulsion. The conductivity of the IL reverse microemulsions was decreased owing to the dilution of conducting polar cores by the addition of insulative PEG-400, indicating that PEG-400 was only solubilized into the reverse IL microemulsion interior. The conclusion was further supported by viscosity measurement.  相似文献   

8.
Solvation dynamics in a neat ionic liquid, 1-pentyl-3-methyl-imidazolium tetra-flouroborate ([pmim][BF4]) and its microemulsion in Triton X-100 (TX-100)/benzene is studied using femtosecond up-conversion. In both the neat ionic liquid and the microemulsion, the solvation dynamics is found to depend on excitation wavelength (lambda(ex)). The lambda(ex) dependence is attributed to structural heterogeneity in neat ionic liquid (IL) and in IL microemulsion. In neat IL, the heterogeneity arises from clustering of the pentyl groups which are surrounded by a network of cation and anions. Such a nanostructural organization is predicted in many recent simulations and observed recently in an X-ray diffraction study. In an IL microemulsion, the surfactant (TX-100) molecules aggregate in form of a nonpolar peripheral shell around the polar pool of IL. The micro-environment in such an assembly varies drastically over a short distance. The dynamic solvent shift (and average solvation time) in neat IL as well as in IL microemulsions decreases markedly as lambda(ex) increases from 375 to 435 nm. In a [pmim][BF4]/water/TX-100/benzene quaternary microemulsion, the solvation dynamics is slower than that in a microemulsion without water. This is ascribed to the smaller size of the water containing microemulsion. The anisotropy decay in an IL microemulsion is found to be faster than that in neat IL.  相似文献   

9.
The effects of confinement of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on solvation dynamics and rotational relaxation of Coumarin 153 (C-153) in Triton X-100/cyclohexane microemulsions have been explored using steady-state and picosecond time-resolved emission spectroscopy. The steady-state and rotational relaxation data indicate that C-153 molecules are incorporated in the core of the microemulsions. The average rotational relaxation time increases with increase in w ([bmim][BF(4)]/[TX-100]) values. The solvent relaxation in the core of the microemulsion occurs on two different time scales and is almost insensitive to the increase in w values. The solvent relaxation is retarded in the pool of the microemulsions compared to the neat solvent. Though, the retardation is very small compared to several-fold retardation of the solvation time of the conventional solvent inside the pool of the microemulsions.  相似文献   

10.
It is of great significance to develop an appropriate water-in-ionic liquid (W/IL) microemulsion suitable for the expression of the catalytic activity of a given enzyme. In this paper, the phase diagram of a new AOT/Triton X-100/H(2)O/[Bmim][PF(6)] pseudo ternary system is presented. With the aid of nonionic surfactant Triton X-100, AOT could be dissolved in hydrophobic ionic liquid [Bmim][PF(6)], forming a large single phase microemulsion region. The water-in-[Bmim][PF(6)] (W/IL) microemulsion domain was identified electrochemically by using K(3)Fe(CN)(6) as a probe. The existence of W/IL microemulsions was demonstrated spectrophotometrically by using CoCl(2) as a probe. New evidences from the FTIR spectroscopic study, which was first introduced to the W/IL microemulsion by substituting D(2)O for H(2)O to eliminate the spectral interference, demonstrated that there existed bulk water at larger ω(0) values (ω(0) was defined as the molar ratio of water to the total surfactant) in the W/IL microemulsion, which had remained unclear before. In addition to the inorganic salts, biomacromolecule laccase could be solubilized in the W/IL microemulsion. The laccase hosted in the microemulsion exhibited a catalytic activity and the activity could be regulated by the composition of the interfacial membrane.  相似文献   

11.
We demonstrate a novel ionic liquid (IL) microemulsion, consisting of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) and nonionic surfactant Triton X-100 prepared in triethylamine which is used either as an organic solvent or a Lewis base. The effects of small amounts of added water on the microstructure of the IL microemulsion are investigated by various techniques. UV/Vis spectroscopic analysis and FTIR spectra indicate that these water molecules are not solubilized into the IL pools of the microemulsions. 1H NMR spectra further show that the added water binds with triethylamine to form a surrounding OH- base environment. Some of OH- ions enter the palisade layers of the IL microemulsions and a continuous base interface is created. The unique solubilization behavior of water reveals that it is possible to use the triethylamine microemulsions as a template to prepare metal hydroxides as well as metal oxides in the microemulsions, which is not possible when using traditional microemulsions.  相似文献   

12.
Ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4), were substituted for polar water and formed nonaqueous microemulsions with toluene by the aid of nonionic surfactant TX-100. The phase behavior of the ternary system was investigated, and microregions of bmimBF4-in-toluene (IL/O), bicontinuous, and toluene-in-bmimBF4 (O/IL) were identified by traditional electrical conductivity measurements. Dynamic light scattering (DLS) revealed the formation of the IL microemulsions. The micropolarities of the IL/O microemulsions were investigated by the UV-vis spectroscopy using the methyl orange (MO) and methylene blue (MB) as absorption probes. The results indicated that the polarity of the IL/O microemulsion increased only before the IL pools were formed, whereas a relatively fixed polar microenvironment was obtained in the IL pools of the microemulsions. Moreover, UV-vis spectroscopy has also shown that ionic salt compounds such as Ni(NO3)2, CoCl2, CuCl2, and biochemical reagent riboflavin could be solubilized into the IL/O microemulsion droplets, indicating that the IL/O microemulsions have potential application in the production of metallic or semiconductor nanomaterials, and in biological extractions or as solvents for enzymatic reactions. The IL/O microemulsions may have some expected effects due to the unique features of ILs and microemulsions.  相似文献   

13.
Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room‐temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. 1H, 11B, and 19F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim][BF4]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X‐100 (TX‐100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim]+ and [BF4]? in the presence of TX‐100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim]+ and [BF4]? and migration of Cl? within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures.  相似文献   

14.
Modifying properties of aqueous surfactant solutions by addition of external additives is an important area of research. Unusual properties of ionic liquids (ILs) make them ideal candidates for this purpose. Changes in important physicochemical properties of aqueous zwitterionic N-dodecyl- N, N-dimethyl-3-ammonio-1-propanesulfonate (SB-12) surfactant solution upon addition of hydrophilic IL 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF 4], are reported. Dynamic light scattering results indicate a dramatic reduction in the average micellar size in the presence of [bmim][BF 4]; micellar (or micelle-like) aggregation in the presence of as high as 30 wt % [bmim][BF 4] is confirmed. Responses from fluorescence probes are used to obtain critical micelle concentration (cmc), aggregation number ( N agg), and dipolarity and microfluidity of the micellar pseudophase of aqueous SB-12 in the presence of [bmim][BF 4]. In general, increasing the amount of [bmim][BF 4] to 30 wt % results in decrease in N agg and increase in cmc. Increase in the dipolarity and the microfluidity of the probe cybotactic region within the micellar pseudophase is observed on increasing [bmim][BF 4] concentration in the solution. It is attributed to increased water penetration into the micellar pseudophase as [bmim][BF 4] is added to aqueous SB-12. It is proposed that IL [bmim][BF 4] behaves similar to an electrolyte and/or a cosurfactant when present at low concentrations and as a polar cosolvent when present at high concentrations. Electrostatic attraction between cation of IL and anion of zwitterion, and anion of IL and cation of zwitterion at low concentrations of [bmim][BF 4] is evoked to explain the observed changes. Presence of IL as cosolvent appears to reduce the efficiency of micellization process by reducing the hydrophobic effect.  相似文献   

15.
Modification of important physicochemical properties of aqueous surfactant solutions can be achieved by addition of environmentally benign room temperature ionic liquids (ILs). While low aqueous solubility of "hydrophobic" ILs limits the amount of IL that may be added to achieve desired changes in the physicochemical properties, hydrophilic ILs do not have such restrictions associated to them. Alterations in the key physicochemical properties of aqueous solutions of a common nonionic surfactant Triton X-100 (TX100) on addition of up to 30 wt % hydrophilic IL 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) are reported. The presence of micellar aggregates in as high as 30 wt % [bmim][BF4]-added aqueous TX100 solutions is established by dynamic light scattering and fluorescence probe behavior. Increasing the concentration of [bmim][BF4] results in decrease in average micellar size and aggregation number and increase in critical micelle concentration, indicating an overall unfavorable aggregation process. Increase in the dipolarity and the microfluidity of the probe cybotactic region within the palisade layer of the micellar phase upon [bmim][BF4] addition implies increased water penetration and the possibility of TX100-[bmim][BF4] interactions. While the changes in some of the physicochemical properties indicate the role of [bmim][BF4] to be similar to a cosurfactant, the IL acts like a cosolvent as far as changes in other properties are concerned. Effectiveness of IL [bmim][BF4] in modifying physicochemical properties of aqueous TX100 is demonstrated.  相似文献   

16.
In this paper we have reported the solvent and rotational relaxation of 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6]) confined in tween 20/([bmim][PF6]/water microemulsion using coumarin 153 (C-153) as probe. The most interesting feature of our experiment was that we observed an increase in solvent relaxation time with increase in R (R = tween 20-to-[bmim][PF6] molar ratio). This is due to the fact that with increase in [bmim][PF6] content of the microemulsions, the microviscosity of the pool of the microemulsions increases, and motion of ions of [bmim][PF6] is hindered in the pool of microemulsions. Since motion of ions is responsible for solvation in room-temperature ionic liquids (RTILs), solvent-relaxation time increases with increase in R.  相似文献   

17.
王冠石  王小永 《化学通报》2017,80(8):777-782,771
添加离子液体会对表面活性剂在水溶液中的聚集行为产生重要影响。本文研究了吐温-20在中低浓度离子液体四氟硼酸1-丁基-3-甲基咪唑鎓([bmim][BF_4])中的胶束化行为。随着[bmim][BF_4]浓度(cIL)从0增加到0.2mol·L~(-1),吐温-20的临界胶束浓度逐渐增大。相比cIL0.05mol·L~(-1),在cIL0.05mol·L~(-1)时加入[bmim][BF_4]使吐温-20临界胶束浓度增大得更加显著。吐温-20胶束聚集数随着离子液体浓度的增加而逐渐减小,这一结果也说明加入离子液体会对吐温-20胶束的生成有抑制作用。吐温-20胶束化热力学研究表明,吐温-20在不同浓度离子液体中的胶束化是熵、焓共同驱动,并具有熵-焓补偿性。随着离子液体浓度的增加,吐温-20胶束平均粒径和胶束微粘性均表现出先增大后减小的变化,在cIL=0.05mol·L~(-1)时达到最大值。  相似文献   

18.
Modifying physicochemical properties of aqueous surfactant solutions in favorable fashion by addition of environmentally benign room-temperature ionic liquids (ILs) has enormous future potential. Due to its unusual properties, an IL may demonstrate a unique role in altering the properties of aqueous surfactant solutions. Changes in the properties of aqueous sodium dodecyl sulfate (SDS), an anionic surfactant, upon addition of a common and popular "hydrophilic" ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] are presented. Addition of low concentrations of [bmim][BF4] (i.e., 相似文献   

19.
In this work, we report on the phase behavior of 1-ethyl-3-methyl-imidazolium-ethylsulfate ([emim][etSO(4)])/limonene/polyethylene glycol tert-octylphenyl ether (Triton X-114 or TX-114) microemulsions as a function of ionic liquid (IL) content and temperature. Phase diagrams, conductivity measurements, and small angle X-ray scattering (SAXS) experiments will be presented. A hydrophilic IL, instead of water is used with the goal to enlarge the temperature range on which stable microemulsions can be formed. Indeed, the system shows remarkably large temperature stability, in particular down to -35 °C. We will emphasize on a comparison with a recently published work about microemulsions composed of [emim][etSO(4)], limonene, and Triton X-100 that to some extent are stable at temperatures well below the freezing point of water. The key parameter responsible for the difference in phase behavior, microstructure, and temperature stability is the average repeating number of ethylene oxide units in the surfactant head group, which is smaller for Triton X-114 compared to Triton X-100. Among the fundamental interest, how the amphiphilicity of the surfactant influences the phase diagram and phase behavior of IL-based microemulsions, the exchange of Triton X-100 by Triton X-114 results in one main advantage: along the experimental path the temperature where phase segregation occurs is significantly lowered leading to single phase microemulsions that exist at temperatures beneath 0 °C.  相似文献   

20.
We carried out the first study about the effect of a compressed gas on the properties of reverse micellar solutions with ionic liquid (IL) polar cores. And the properties of compressed CO2/cyclohexane/1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4])/Triton X-100 (TX-100) system were investigated at 288.2, 293.2, 298.2, 308.2 K and different pressures by using phase behavior measurement, small-angle x-ray scattering, and UV-Vis techniques. The concentration of the surfactant in the solution was 0.3 mol/l (M). It was found that compressed CO2 could enhance solubilization of the IL in the reverse micelles considerably at suitable pressures, and formation of the reverse micelles could be controlled easily by pressure. Increase of CO2 pressure resulted in decrease of the micellar sizes at fixed [bmim][BF4]-to-surfactant molar ratios (w), and the size of the reverse micelles increased with the increase of w values. The polarity of the IL cores increased continuously with increasing w value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号