首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We performed fragment molecular orbital (FMO) calculations to examine the molecular interactions between the prion protein (PrP) and GN8, which is a potential curative agent for prion diseases. This study has the following novel aspects: we introduced the counterpoise method into the FMO scheme to eliminate the basis set superposition error and examined the influence of geometrical fluctuation on the interaction energies, thereby enabling rigorous analysis of the molecular interaction between PrP and GN8. This analysis could provide information on key amino acid residues of PrP as well as key units of GN8 involved in the molecular interaction between the two molecules. The present FMO calculations were performed using an original program developed in our laboratory, called “Parallelized ab initio calculation system based on FMO (PAICS)”. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

2.
We have theoretically examined the relative binding affinities (RBA) of typical ligands, 17beta-estradiol (EST), 17alpha-estradiol (ESTA), genistein (GEN), raloxifene (RAL), 4-hydroxytamoxifen (OHT), tamoxifen (TAM), clomifene (CLO), 4-hydroxyclomifene (OHC), diethylstilbestrol (DES), bisphenol A (BISA), and bisphenol F (BISF), to the alpha-subtype of the human estrogen receptor ligand-binding domain (hERalpha LBD), by calculating their binding energies. The ab initio fragment molecular orbital (FMO) method, which we have recently proposed for the calculations of macromolecules such as proteins, was applied at the HF/STO-3G level. The receptor protein was primarily modeled by 50 amino acid residues surrounding the ligand. The number of atoms in these model complexes is about 850, including hydrogen atoms. For the complexes with EST, RAL, OHT, and DES, the binding energies were calculated again with the entire ERalphaLBD consisting of 241 residues or about 4000 atoms. No significant difference was found in the calculated binding energies between the model and the real protein complexes. This indicates that the binding between the protein and its ligands is well characterized by the model protein with the 50 residues. The calculated binding energies relative to EST were very well correlated with the experimental RBA (the correlation coefficient r=0.837) for the ligands studied in this work. We also found that the charge transfer between ER and ligands is significant on ER-ligand binding. To our knowledge, this is the first achievement of ab initio quantum mechanical calculations of large molecules such as the entire ERalphaLBD protein.  相似文献   

3.
In the field of drug discovery, it is important to accurately predict the binding affinities between target proteins and drug applicant molecules. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics‐based force fields, although they cannot fully describe protein–ligand interactions. A noteworthy computational method in development involves large‐scale electronic structure calculations. Fragment molecular orbital (FMO) method, which is one of such large‐scale calculation techniques, is applied in this study for calculating the binding energies between proteins and ligands. By testing the effects of specific FMO calculation conditions (including fragmentation size, basis sets, electron correlation, exchange‐correlation functionals, and solvation effects) on the binding energies of the FK506‐binding protein and 10 ligand complex molecule, we have found that the standard FMO calculation condition, FMO2‐MP2/6‐31G(d), is suitable for evaluating the protein–ligand interactions. The correlation coefficient between the binding energies calculated with this FMO calculation condition and experimental values is determined to be R = 0.77. Based on these results, we also propose a practical scheme for predicting binding affinities by combining the FMO method with the quantitative structure–activity relationship (QSAR) model. The results of this combined method can be directly compared with experimental binding affinities. The FMO and QSAR combined scheme shows a higher correlation with experimental data (R = 0.91). Furthermore, we propose an acceleration scheme for the binding energy calculations using a multilayer FMO method focusing on the protein–ligand interaction distance. Our acceleration scheme, which uses FMO2‐HF/STO‐3G:MP2/6‐31G(d) at Rint = 7.0 Å, reduces computational costs, while maintaining accuracy in the evaluation of binding energy. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
The three‐body fragment molecular orbital (FMO3) method is formulated for density‐functional tight‐binding (DFTB). The energy, analytic gradient, and Hessian are derived in the gas phase, and the energy and analytic gradient are also derived for polarizable continuum model. The accuracy of FMO3‐DFTB is evaluated for five proteins, sodium cation in explicit solvent, and three isomers of polyalanine. It is shown that FMO3‐DFTB is considerably more accurate than FMO2‐DFTB. Molecular dynamics simulations for sodium cation in water are performed for 100 ps, yielding radial distribution functions and coordination numbers. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
Analytic first and second derivatives of the energy are developed for the fragment molecular orbital method interfaced with molecular mechanics in the electrostatic embedding scheme at the level of Hartree-Fock and density functional theory. The importance of the orbital response terms is demonstrated. The role of electrostatic embedding upon molecular vibrations is analyzed, comparing force field and quantum mechanical treatments for an ionic liquid and a solvated protein. The method is applied for 100 protein conformations sampled in molecular dynamics (MD) to take into account the complexity of a flexible protein structure in solution, and a good agreement with experimental data is obtained: Frequencies from an experimental infrared (IR) spectrum are reproduced within 17 cm−1 .  相似文献   

6.
Thermolysin (TLN) is a metalloprotease widely used as a nonspecific protease for sequencing peptide and synthesizing many useful chemical compounds by the chemical industry. It was experimentally shown that the activity and functions of TLN are inhibited by the binding of many types of amino acid dipeptides. However, the binding mechanisms between TLN and dipeptides have not been clarified at the atomic and electronic levels. In this study, we investigated the binding mechanisms between TLN and four dipeptides. Specific interactions and binding free energies (BFEs) between TLN and the dipeptides were calculated using molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital (FMO) methods. The molecular systems were embedded in solvating water molecules during calculations. The calculated BFEs were qualitatively consistent with the trend of the experimentally observed inhibition of TLN activity by binding of the dipeptides. In addition, the specific interactions between the dipeptides and each amino acid residue of TLN or solvating water molecules were elucidated by the FMO calculations.  相似文献   

7.
Optimal Gaussian-type orbital (GTO) basis sets of positron and electron in positron-molecule complexes are proposed by using the full variational treatment of molecular orbital (FVMO) method. The analytical expression for the energy gradient with respect to parameters of positronic and electronic GTO such as the orbital exponents, the orbital centers, and the linear combination of atomic orbital (LCAO) coefficients, is derived. Wave functions obtained by the FVMO method include the effect of electronic or positronic orbital relaxation explicitly and satisfy the virial and Hellmann–Feynman theorems completely. We have demonstrated the optimization of each orbital exponent in various positron-atomic and anion systems, and estimated the positron affinity (PA) as the difference between their energies. Our PA obtained with small basis set is in good agreement with the numerical Hartree–Fock result. We have calculated the OH and [OH; e+] species as the positron-molecular system by the FVMO method. This result shows that the positronic basis set not only becomes more diffuse but also moves toward the oxygen atom. Moreover, we have applied this method to determine both the nuclear and electronic wave functions of LiH and LiD molecules simultaneously, and obtained the isotopic effect directly. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 491–501, 1998  相似文献   

8.
Efficient quantum chemical calculations of electrostatic properties, namely, the electron density (EDN), electrostatic potential (ESP), and electric field (EFL), were performed using the fragment molecular orbital (FMO) method. The numerical errors associated with the FMO scheme were examined at the HF, MP2, and RI‐MP2 levels of theory using 4 small peptides. As a result, the FMO errors in the EDN, ESP, and EFL were significantly smaller than the magnitude of the electron correlation effects, which indicated that the FMO method provides sufficiently accurate values of electrostatic properties. In addition, an attempt to reduce the computational effort was proposed by combining the FMO scheme and a point charge approximation. The error due to this approximation was examined using 2 proteins, prion protein and human immunodeficiency virus type 1 protease. As illustrative examples, the ESP values at the molecular surface of these proteins were calculated at the MP2 level of theory.  相似文献   

9.
Accurate computational estimate of the protein–ligand binding affinity is of central importance in rational drug design. To improve accuracy of the molecular mechanics (MM) force field (FF) for protein–ligand simulations, we use a protein‐specific FF derived by the fragment molecular orbital (FMO) method and by the restrained electrostatic potential (RESP) method. Applying this FMO‐RESP method to two proteins, dodecin, and lysozyme, we found that protein‐specific partial charges tend to differ more significantly from the standard AMBER charges for isolated charged atoms. We did not see the dependence of partial charges on the secondary structure. Computing the binding affinities of dodecin with five ligands by MM PBSA protocol with the FMO‐RESP charge set as well as with the standard AMBER charges, we found that the former gives better correlation with experimental affinities than the latter. While, for lysozyme with five ligands, both charge sets gave similar and relatively accurate estimates of binding affinities. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Polyglutamine (polyQ) diseases, including Huntington’s disease (HD), are caused by expansion of polyQ-encoding repeats within otherwise unrelated gene products. The aggregation mechanism of polyQ diseases, the inhibition mechanism of Congo red, and the alleviation mechanism of trehalose were proposed here based on quantum chemical calculations and molecular dynamics simulations. The calculations and simulations revealed the following. The effective molecular bonding is between glutamine (Gln) and Gln (Gln + Gln), between Gln and Congo red (Gln + Congo red), and between Gln and trehalose (Gln + trehalose). The bonding strength is −13.1 kcal/mol for Gln + Gln, −24.4 kcal/mol for Gln + Congo red, and −12.0 kcal/mol for Gln + trehalose. In the polyQ region, both the number of intermolecular Gln + Gln formations and the total calories generated by the Gln + Gln formation are proportional to the number of repetitions of Gln. We propose an aggregation mechanism whose heat generated by the intermolecular Gln + Gln formation causes the pathogeny of polyQ disease. In our aggregation mechanism, this generated heat collapses the host protein and promotes fibrillogenesis. Without contradiction, our mechanism can explain all the experimental results reported to date. Our mechanism can also explain the inhibition mechanism by Congo red as an inhibitor of polyglutamine-induced protein aggregation and the alleviation mechanism by trehalose as an alleviator of that aggregation. The inhibition mechanism by Congo red is explained by the strong interaction with Gln and by the characteristic structure of Congo red.  相似文献   

11.
Summary A molecular dynamics/energy-minimisation protocol has been used to analyse the structural and energetic effects of functional group substitution on the binding of a series of C4-modified 2-deoxy-2,3-didehydro-N-acetylneuraminic acid inhibitors to influenza virus sialidase. Based on the crystal structure of sialidase, a conformational searching protocol, incorporating multiple randomisation steps in a molecular dynamics simulation was used to generate a range of minimum-energy structures. The calculations were useful for predicting the number, location, and orientation of structural water molecules within protein-ligand complexes. Relative binding energies were calculated for the series of complexes using several empirical molecular modelling approaches. Energies were computed using molecular-mechanics-derived interactions as the sum of pairwise atomic nonbonded energies, and in a more rigorous manner including solvation effects as the change in total electrostatic energy of complexation, using a continuum-electrostatics (CE) approach. The CE approach exhibited the superior correlation with observed affinities. Both methods showed definite trends in observed and calculated binding affinities; in both cases inhibitors with a positively charged C4 substituent formed the tightest binding to the enzyme, as observed experimentally.This paper is based on a presentation given at the 14th Molecular Graphics and Modelling Society Conference, held in Cairns, Australia, August 27–September 1, 1995.Presently on a visiting postdoctoral fellowship in the Department of Biomolecular Structure, Glaxo Research & Development Ltd, Greenford, Middlesex UB6 OHE, U.K.  相似文献   

12.
A two-level hierarchical scheme, generalized distributed data interface (GDDI), implemented into GAMESS is presented. Parallelization is accomplished first at the upper level by assigning computational tasks to groups. Then each group does parallelization at the lower level, by dividing its task into smaller work loads. The types of computations that can be used with this scheme are limited to those for which nearly independent tasks and subtasks can be assigned. Typical examples implemented, tested, and analyzed in this work are numeric derivatives and the fragment molecular orbital method (FMO) that is used to compute large molecules quantum mechanically by dividing them into fragments. Numeric derivatives can be used for algorithms based on them, such as geometry optimizations, saddle-point searches, frequency analyses, etc. This new hierarchical scheme is found to be a flexible tool easily utilizing network topology and delivering excellent performance even on slow networks. In one of the typical tests, on 16 nodes the scalability of GDDI is 1.7 times better than that of the standard parallelization scheme DDI and on 128 nodes GDDI is 93 times faster than DDI (on a multihub Fast Ethernet network). FMO delivered scalability of 80-90% on 128 nodes, depending on the molecular system (water clusters and a protein). A numerical gradient calculation for a water cluster achieved a scalability of 70% on 128 nodes. It is expected that GDDI will become a preferred tool on massively parallel computers for appropriate computational tasks.  相似文献   

13.
The ab initio fragment molecular orbital (FMO) calculations were performed for the cAMP receptor protein (CRP) complexed with a cAMP and DNA duplex to elucidate their sequence-specific binding and the stability of the DNA duplex, as determined by analysis of their inter- and intramolecular interactions. Calculations were performed with the AMBER94 force field and at the HF and MP2 levels with several basis sets. The interfragment interaction energies (IFIEs) were analyzed for interactions of CRP-cAMP with each base pair, DNA duplex with each amino acid residue, and each base pair with each residue. In addition, base-base interactions were analyzed including hydrogen bonding and stacking of DNA. In the interaction between DNA and CRP-cAMP, there was a significant charge transfer (CT) from the DNA to CRP, and this CT interaction played an important role as well as the electrostatic interactions. It is necessary to apply a quantum mechanical approach beyond the "classical" force-field approach to describe the sequence specificity. In the DNA intramolecular interaction, the dispersion interactions dominated the stabilization of the base-pair stacking interactions. Strong, attractive 1,2-stacking interactions and weak, repulsive 1,3-stacking interactions were observed. Comparison of the intramolecular interactions of free and complexed DNA revealed that the base-pairing interactions were stronger, and the stacking interactions were weaker, in the complexed structure. Therefore, the DNA duplex stability appears to change due to both the electrostatic and the CT interactions that take place under conditions of DNA-CRP binding.  相似文献   

14.
The regioselectivity of nucleophilic addition to substituted arynes was predicted using frontier molecular orbital contribution analysis. This model indicates that the percentage of the LUMO on the reacting terminus of the aryne is responsible for the observed regioselectivity; the nucleophile attacks the carbon possessing higher contribution of the LUMO.  相似文献   

15.
This work proposes a new molecular orbital localization procedure. The approach is based on the decomposition of the overlap matrix in accordance with the partitioning of the three‐dimensional physical space into basins with clear chemical meaning arising from the topological analysis of the electron localization function. The procedure is computationally inexpensive, provides a straightforward interpretation of the resulting orbitals in terms of their localization indices and basin occupancies, and preserves the σ/π‐separability in planar N‐electron systems. The localization algorithm is tested on selected molecular systems. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The CH/pi hydrogen bond is a weak molecular force occurring between CH groups (soft acids) and pi-systems (soft bases), and has been recognized to be important in the interaction of proteins with their specific ligands. For instance, it is well known that Src homology-2 protein (SH2) recognizes its specific pTyr peptide in two key regions, pTyr-binding region and specificity-determining region, by the use of attractive molecular forces, including the CH/pi hydrogen bond. We hypothesized that the CH/pi hydrogen bond plays a key role in determining the selectivity of SH2 proteins, and studied this issue by the ab initio fragment molecular orbital (FMO) method. The FMO calculations were carried out, at the HF/6-31G* and MP2/6-31G* level, for SH2 domains of Src, Grb2, P85alpha(N), Syk, and SAP, in complex with corresponding pTyr peptides. CH/pi hydrogen bonds have in fact been found to be important in stabilizing the structure of the complexes. We conclude that the CH/pi hydrogen bond plays an indispensable role in the recognition of SH2 domains with their specific pTyr peptides, thus playing a vital role in the signal transduction system.  相似文献   

17.
FeF3 has attracted interest as a conversion‐reaction‐based positive electrode material in applications to lithium ion batteries. However, slow reaction kinetics is a major drawback due to its poor electrical conductivity. The electronic features of FeF3 were examined using the DV‐Xα molecular orbital method. This article reports the effects of oxygen doping on the bonding characteristics and electrical conductivity. An analysis of the bond overlap population and spatial distribution of electrons showed that the Fe? O bond has a more covalent nature than the Fe? F bond. New energy levels were generated in the original band gap region through an interaction between the Fe3d and O2p orbitals with the introduction of oxygen. The electrical conductivity of FeF3 is expected to be increased by the partial substitution of oxygen for fluorine due to the higher covalent character and the formation of new energy levels. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The application of combined quantum mechanical (QM) and molecular mechanical methods to large molecular systems requires an adequate treatment of the boundary between the two approaches. In this article, we extend the generalized hybrid orbital (GHO) method to the semiempirical parameterized model 3 (PM3) Hamiltonian combined with the CHARMM force field. The GHO method makes use of four hybrid orbitals, one of which is included in the QM region in self-consistent field optimization and three are treated as auxiliary orbitals that do not participate in the QM optimization, but they provide an effective electric field for interactions. An important feature of the GHO method is that the semiempirical parameters for the boundary atom are transferable, and these parameters have been developed for a carbon boundary atom consistent with the PM3 model. The combined GHO-PM3/CHARMM model has been tested on molecular geometry and proton affinity for a series of organic compounds.Acknowledgement We thank the National Institutes of Health for support of this research.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

19.
The multi-component molecular orbital method, which can take account of the quantum effect of the electrons and nuclei, is applied to the calculation of lithium hydride isotope species with the configuration interaction (CI) scheme. The optimum basis set functions for quantum nuclei are proposed by the fully variational procedure under single electronic–single nuclear excitation CI level. The average internuclear distances and dipole moments for isotopic lithium hydride molecules calculated with small basis functions are reasonable agreement with the corresponding experimental values.  相似文献   

20.
The stereo- and electronic structures of the binary molecular complex composed of methyl methacrylate and boron trifluoride are obtained by using an ab initio molecular orbital method with an STO-3G basis set. The total energy change on the binary molecular complex formation is ?1.3 X 10?2 Hartree (?8.2 kcal/mol). The electron transfer from methyl methacrylate to boron trifluoride and the change in the energy level of the lowest unoccupied molecular orbital of methyl methacrylate on the complex formation with boron trifluoride are much smaller than those on the complex formation with boron trichloride. A twisted form in which the dihedral angle between the vinyl plane and the ester plane is 16.9° is the most stable structure of the binary molecular complex composed of methyl methacrylate and boron trifluoride. A strong bonding overlap population between a β-hydrogen of methyl methacrylate and a fluorine of boron trifluoride is found in this conformation. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号