首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bond dissociation energies are frequently derived from values of the high pressure activation energy for bond scission reactions. The value derived depends on the transition state structure chosen for the reaction. We consider several models of the transition state and show that the variation in derived BDE values can be quite substantial, 3 to 6 kcal/mol at the high temperatures of pyrolysis kinetics. Application of the restricted Gorin model of the transition state results in BDE values in good agreement with current thermochemistry, while the other models tested result in lower to much lower values. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The 0 K dissociative ionization onsets of C2H3X --> C2H3(+) + X (X = Cl, I) are measured by threshold photoelectron-photoion coincidence spectroscopy. The heats of formation of C2H3Cl (Delta H(f,0K)(0) = 30.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 22.6 +/- 3.2 kJ mol(-1)) and C2H3I (Delta(H f,0K)(0) = 140.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 131.2 +/- 3.2 kJ mol(-1)) and C- X bond dissociation enthalpies as well as those of their ions are determined. The data help resolve a longstanding discrepancy among experimental values of the vinyl chloride heat of formation, which now agrees with the latest theoretical determination. The reported vinyl iodide heat of formation is the first reliable experimental determination. Additionally, the adiabatic ionization energy of C2H3I (9.32 +/- 0.01 eV) is measured by threshold photoelectron spectroscopy.  相似文献   

3.
Two types of mathematical relations are discussed, which represent the connection between carbon-carbon bond energies and carbon-carbon bond distances. They similarly describe the relation between carbon-hydrogen bond energies and the corresponding carbon-hydrogen bond distances.  相似文献   

4.
The hydride complex [Pt(dmpe)2H]+ (dmpe = 1,2-bis(dimethylphosphino)ethane) reversibly transfers H- to the rhenium carbonyl complex [CpRe(PMe3)(NO)(CO)]+, giving the formyl CpRe(PMe3)(NO)(CHO). From the equilibrium constant for the hydride transfer (16.2), the DeltaGdegrees for the reaction was determined (-1.6 kcal/mol), as was the hydride-donating ability of the formyl (44.1 kcal/mol). The hydride-donating ability, DeltaGdegrees(H-), is defined as the energy required to release the hydride ion into solution by the formyl complex [i.e. M(CHO) right arrow M(CO)+ + H-]. Subsequently, the hydride-donating ability of a series of formyl complexes was determined, ranging from 44 to 55 kcal/mol. With use of this information, two rhenium carbonyl complexes, [CpRe(NO)(CO)2]+ and [Cp*Re(NO)(CO)2]+, were hydrogenated to formyls, employing [Pt(dmpp)2]2+ and Proton-Sponge. Finally, the E(1/2)(I/0) values for five rhenium carbonyl complexes were measured by cyclic voltammetry. Combined with the known DeltaGdegrees(H-) values for the complexes, the hydrogen atom donating abilities could be determined. These values were all found to be approximately 50 kcal/mol.  相似文献   

5.
本文报道超音速射流冷却条件下, 用同步辐射光研究CH3Cl光电离及其解离电离的动力学, 测得CH3Cl的电离能(IP)为11.28±0.01eV。通过测定CH3Cl光解离电离碎片的出现势(AP), 并结合有关已确认的热力学数据, 获得了它们的标准生成焓、离子型分子中的键能、中性分子或自由基中的键能及母体离子的解离能等热力学数据。对CH3Cl分子VUV光解离电离通道进行了分析。  相似文献   

6.
7.
The structures and energies of singlet and triplet neutral carbon linear chains up to 22 atoms – and frequencies of vibrations for chains up to 17 atoms – are obtained using density functional theory (B3LYP) with a polarized split-valence basis set (6-31G*). Analytical expressions for the dependence of the energy with the number of atoms in the chains are presented with an explicit identification of the electrostatic contribution. The addition reaction free energies of two linear chains allow to visualize the reaction pathways of formation of chains up to 17 carbon atoms and to establish their dissociation temperatures. Free energy calculations show that odd chains of more than 15 atoms have triplet ground states at experimental accessible temperatures. Cycling characteristics of linear chains are discussed.  相似文献   

8.
9.
10.
11.
Both C-H bond dissociation energies for cyclobutene were measured in the gas phase (BDE = 91.2 +/- 2.3 (allyl) and 112.5 +/- 2.5 (vinyl) kcal mol-1) via a thermodynamic cycle by carrying out proton affinity and electron-binding energy measurements on 1- and 3-cyclobutenyl anions. The results were compared to those for an acyclic model compound, cis-2-butene, and provide the needed information to experimentally establish the heat of formation of cyclobutadiene. Chemically accurate G3 and W1 calculations also were carried out on cycloalkanes, cycloalkenes, and selected reference compounds. It appears that commonly cited bond energies for cyclopropane, cyclobutane, and cyclohexane are 3 to 4 kcal mol-1 too small and their pi bond strengths, as given by BDE1 - BDE2, are in error by up to 8 kcal mol-1.  相似文献   

12.
Ketones are a major class of organic chemicals and solvents, which contribute to hydrocarbon sources in the atmosphere, and are important intermediates in the oxidation and combustion of hydrocarbons and biofuels. Their stability, thermochemical properties, and chemical kinetics are important to understanding their reaction paths and their role as intermediates in combustion processes and in atmospheric chemistry. In this study, enthalpies (ΔH°(f 298)), entropies (S°(T)), heat capacities (C(p)°(T)), and internal rotor potentials are reported for 2-butanone, 3-pentanone, 2-pentanone, 3-methyl-2-butanone, and 2-methyl-3-pentanone, and their radicals corresponding to loss of hydrogen atoms. A detailed evaluation of the carbon-hydrogen bond dissociation energies (C-H BDEs) is also performed for the parent ketones for the first time. Standard enthalpies of formation and bond energies are calculated at the B3LYP/6-31G(d,p), B3LYP/6-311G(2d,2p), CBS-QB3, and G3MP2B3 levels of theory using isodesmic reactions to minimize calculation errors. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) density functional level and are used to determine the entropies and heat capacities. The recommended ideal gas-phase ΔH°(f 298), from the average of the CBS-QB3 and G3MP2B3 levels of theory, as well as the calculated values for entropy and heat capacity are shown to compare well with the available experimental data for the parent ketones. Bond energies for primary, secondary, and tertiary radicals are determined; here, we find the C-H BDEs on carbons in the α position to the ketone group decrease significantly with increasing substitution on these α carbons. Group additivity and hydrogen-bond increment values for these ketone radicals are also determined.  相似文献   

13.
A number of properties of interatomic surfaces, as defined by the quantum theory of atoms in molecules (QTAIM), are calculated for approximately 50 molecules. These integrated surface properties are then tested for their ability to correlate and predict bond energies from MP2 atomisation energies. Three surface properties, each with units of energy, are found to show strong correlations with bond energy: single parameter models work well for non-polar bonds, but fail for polar and ionic bonds, where multi-variate methods are required. The local curvature of the interatomic surface is found to be useful this respect, reflecting charge transfer effects.  相似文献   

14.
Summary An adsorptional-kinetic method is proposed for the determination of bond energies. Calculations by the proposed method are in satisfactory agreement with the results of previously proposed methods.  相似文献   

15.
The complete basis set method CBS-QB3 has been used to study the thermochemistry and kinetics of the esters ethyl propanoate (EP) and methyl butanoate (MB) to evaluate initiation reactions and intermediate products from unimolecular decomposition reactions. Using isodesmic and isogeitonic equations and atomization energies, we have estimated chemically accurate enthalpies of formation and bond dissociation energies for the esters and species derived from them. In addition it is shown that controversial literature values may be resolved by adopting, for the acetate radical, CH3C(O)O(.-), DeltaH(o)(f)298.15K) = -197.8 kJ mol(-1) and for the trans-hydrocarboxyl radical, C(.-)(O)OH, -181.6 +/- 2.9 kJ mol(-1). For EP, the lowest energy decomposition path encounters an energy barrier of approximately 210 kJ mol(-1) (approximately 50 kcal mol(-1)), which proceeds through a six-membered ring transition state (retro-ene reaction) via transfer of the primary methyl H atom from the ethyl group to the carbonyl oxygen, while cleaving the carbon-ether oxygen to form ethene and propanoic acid. On the other hand, the lowest energy path for MB has a barrier of approximately 285 kJ mol(-1), producing ethene. Other routes leading to the formation of aldehydes, alcohols, ketene, and propene are also discussed. Most of these intramolecular hydrogen transfers have energy barriers lower than that needed for homolytic bond fission (the lowest of which is 353 kJ mol(-1) for the C(alpha)-C(beta) bond in MB). Propene formation is a much higher energy demanding process, 402 kJ mol(-1), and it should be competitive with some C-C, C-O, and C-H bond cleavage processes.  相似文献   

16.
17.
Clegg G  Melia TP 《Talanta》1967,14(8):989-990
Minimum values of the liquid-crystal interfacial free energy have been obtained from data on the maximum supercooling of small droplets of solutions of ionic crystals.  相似文献   

18.
The new method of calculating bond energies recently reported has now been extended to include multiple bonds. For carbon-carbon double and triple bonds the energy is 1·50 and 1·75 times the single bond energy when corrected for the multiple bond length. These multiplicity factors are used to calculate the single bond energies for nitrogen and oxygen that would correspond to the experimental bond lengths and dissociation energies of N2 and O2. Three different single bond energy contributions each for nitrogen and oxygen are thus determined, and estimates are made for similar values for fluorine, phosphorus, sulfur, chlorine, bromine and iodine. The possible significance of such values is discussed in terms of bond energy calculations for 141 gaseous molecules, based on a consideration of the effect of lone pair electrons in bond weakening. Calculated bond energies for CO, CO2, NO, NO2, and other compounds are in excellent agreement with the experimental values.  相似文献   

19.
The sublimation pressures of tetraphenylmethane in the temperature range 396 to 466 K have been determined from the simultaneous measurements of the torsional recoil and the rate of mass effusion. The enthalpy and entropy of sublimation derived from the least-squares analyses of the results are (33.65 ± 0.60)kcalthmol−1 and (56 ± 2)calthK−1mol−1 respectively. The average bond dissociation energy 〈D〉(CPh) is calculated to be (99.2 ± 1.5)kcalthmol−1. Estimates of the bond dissociation energies for the stepwise dissociation processes of CPh4 are presented.  相似文献   

20.
On the basis of recently synthesized calix[4]hydroquinone (CHQ) nanotubes which were self-assembled with infinitely long one-dimensional (1-D) short hydrogen bonds (SHB), we have investigated the nature of 1-D SHB using first-principles calculations for all the systems including the solvent water. The H-bonds relay (i.e., contiguous H-bonds) effect in CHQs shortens the H...O bond distances significantly (by more than 0.2 A) and increases the bond dissociation energy to a large extent (by more than approximately 4 kcal/mol) due to the highly enhanced polarization effect along the H-bond relay chain. The H-bonds relay effect shows a large increase in the chemical shift associated with the SHB. The average binding energies for the infinite 1-D H-bond arrays of dioles and dions increase by approximately 4 and approximately 9 kcal/mol per H-bond, respectively. The solvent effect (due to nonbridging water molecules) has been studied by explicitly adding water molecules in the CHQ tube crystals. This effect is found to be small with slight weakening of the SHB strength; the H...O bond distance increases only by 0.02 A, and the average binding energy decreases by approximately 1 kcal/mol per H-bond. All these results based on the first-principles calculations are the first detailed analysis of energy gain by SHB and energy loss by solvent effect, based on a partitioning scheme of the interaction energy components. These reliable results elucidate not only the self-assembly phenomena based on the H-bond relay but also the solvent effect on the SHB strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号