首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition behavior from uncoupled to coupled multiple stacked CdSe/ZnSe quantum-dot (QD) arrays grown by molecular beam epitaxy were investigated. Transmission electron microscopy showed that vertically stacked self-assembled CdSe QD arrays were embedded in the ZnSe barriers. The results for the photoluminescence (PL) data at 18 K demonstrated clearly that the transition behavior from uncoupled to coupled peaks depended on the ZnSe barrier thickness. The temperature-dependent PL measurements showed that the activation energy of the electrons confined in the CdSe QDs increased dramatically with decreasing ZnSe spacer layer thickness due to the strong coupling between CdSe/ZnSe QD arrays. The present observations can help improve understanding of the dependence of the coupling behavior and activation energy in CdSe/ZnSe QDs on the spacer layer thickness.  相似文献   

2.
We have investigated a series of double-layer structures consisting of a layer of self-assembled non-magnetic CdSe quantum dots (QDs) separated by a thin ZnSe barrier from a ZnCdMnSe diluted magnetic semiconductor (DMSs) quantum well (QW). In the series, the thickness of the ZnSe barrier ranged between 12 and 40 nm. We observe two clearly defined photoluminescence (PL) peaks in all samples, corresponding to the CdSe QDs and the ZnCdMnSe QW, respectively. The PL intensity of the QW peak is observed to decrease systematically relative to the QD peak as the thickness of the ZnSe barrier decreases, indicating a corresponding increase in carrier tunneling from the QW to the QDs. Furthermore, polarization-selective PL measurements reveal that the degree of polarization of the PL emitted by the CdSe QDs increases with decreasing thickness of the ZnSe barriers. The observed behavior is discussed in terms of anti-parallel spin interaction between carriers localized in the non-magnetic QDs and in the magnetic QWs.  相似文献   

3.
采用光致荧光发射谱(PL)和时间分辨荧光发射谱(TRPL)研究了GaAs间隔层厚度对自组装生长的双层InAs/GaAs量子点分子光学性质的影响.首先,测量低温下改变激发强度的PL谱,底层量子点和顶层量子点的PL强度比值随激发强度发生变化,表明两层量子点之间的耦合作用和层间载流子的转移随着间隔层厚度变大而变弱.接着测量改变温度的PL谱,量子点荧光光谱峰值位置(Emax)、半峰全宽及积分强度随温度发生变化,表明GaAs间隔层厚度直接影响到量子点内载流子的动力学过程和量子点发光的热淬灭过程.最后,TRPL测量发现60mL比40mL间隔层厚度样品的载流子隧穿时间有明显延长.  相似文献   

4.
不同厚度CdSe阱层的表面上自组织CdSe量子点的发光性质   总被引:2,自引:2,他引:0  
利用变温和变激发功率分别研究了不同厚度CdSe阱层的自组织CdSe量子点的发光。稳态变温光谱表明:低温下CdSe量子阱有很强的发光,高温猝灭,而其表面上的量子点发光可持续到室温,原因归结于量子点的三维量子尺寸限制效应;变激发功率光谱表明:量子点激子发光是典型的自由激子发光,且在功率增加时。宽阱层表面上的CdSe量子点有明显的带填充效应。通过比较不同CdSe阱层厚度的样品的发光,发现其表面上量子点的发光差异较大,这可以归结为阱层厚度不同导致应变弛豫的程度不同,直接决定了所形成量子点的大小与空间分布[1]。  相似文献   

5.
We investigate the effects of a thin AlAs layer with different position and thickness on the optical properties of InAs quantum dots (QDs) by using transmission electron microscopy and photoluminescence (PL). The energy level shift of InAs QD samples is observed by introducing the thin AlAs layer without any significant loss of the QD qualities. The emission peak from InAs QDs directly grown on the 4 monolayer (ML) AlAs layer is blueshifted from that of reference sample by 219 meV with a little increase in FWHM from 42–47 meV for ground state. In contrast, InAs QDs grown under the 4 ML AlAs layer have PL peak a little redshifted to lower energy by 17 meV. This result is related to the interdiffusion of Al atom at the InAs QDs caused by the annealing effect during growing of InAs QDs on AlAs layer.  相似文献   

6.
The Optical characteristics of InAs quantum dots (QDs) embeded in InAlGaAs on InP have been investigated by photoluminescence (PL) spectroscopy and time-resolved PL. Four different QD samples are grown by using molecular beam epitaxy, and all the QD samples have five-stacked InAs quantum dot layers with a different InAlGaAs barrier thickness. The PL yield from InAs QDs was increased with an increase in the thickness of the InAlGaAs barrier, and the emission peak positions of all InAs QD samples were measured around 1.5 μm at room temperature. The decay time of the carrier in InAs QDs is decreased abruptly in the QD sample with the 5 nm InAlGaAs barrier. This feature is explained by the tunneling and coupling effect in the vertical direction and probably defect generation.  相似文献   

7.
量子点(QD)照明器件中电流导致的焦耳热会使其工作温度高于室温,因此研究量子点的发光热稳定性十分重要。本文利用稳态光谱和时间分辨光谱研究了具有不同壳层厚度的Mn掺杂ZnSe(Mn: ZnSe)量子点的变温发光性质,温度范围是80~500 K。实验结果表明,厚壳层(6.5单层(MLs))Mn: ZnSe量子点的发光热稳定性要优于薄壳层(2.6 MLs)的量子点。从80 K升温到400 K的过程中,厚壳层Mn: ZnSe量子点的发光几乎没有发生热猝灭,发光量子效率在400 K高温下依然可以达到60%。通过对比Mn: ZnSe量子点的变温发光强度与荧光寿命,对Mn: ZnSe量子点发光热猝灭机制进行了讨论。最后,为了研究Mn: ZnSe量子点的发光热猝灭是否为本征猝灭,对具有不同壳层厚度的Mn: ZnSe量子点进行了加热-冷却循环(300-500-300 K)测试,发现厚壳层的Mn: ZnSe量子点的发光在循环中基本可逆。因此,Mn: ZnSe量子点可以适用于照明器件,即使器件中会出现不可避免的较强热效应。  相似文献   

8.
An asymmetrically coupled double quantum dot (QD) system consisting of adjacent CdSe and CdZnMnSe QD layers in a ZnSe matrix was investigated using polarization-selective magneto-photoluminescence (PL). Two well-resolved PL peaks are observed corresponding, respectively, to the CdSe and the CdZnMnSe QDs. The peaks exhibit significant change in the intensity and energy position when a magnetic field is applied. The enhancement of the degree of σ circular polarization emitted by the non-magnetic CdSe QDs is observed in the double layer system, as compared to that observed in CdSe QDs without the influence of neighboring CdZnMnSe QDs. This behavior was discussed in terms of antiferromagnetic interaction between carrier spins localized in pairs of CdSe and CdZnMnSe QDs that are electronically coupled.  相似文献   

9.
We are reporting the growth of multilayer stacks of quantum dots (10 periods) with a combination capping of In0.21Al0.21Ga0.58As (30 Å) and GaAs (70–180 Å) grown by solid source molecular beam epitaxy (MBE). Reflection high energy electron diffraction (RHEED) has been used for the insitu monitoring of quantum dot (QD) formation in heterostructure samples. The samples were also characterized by other exsitu techniques like cross sectional transmission electron microscopy (XTEM) and photoluminescence measurements (PL). For a heterostructure sample with thin barrier thickness (<100 Å), an XTEM image showed the stacking of QDs only up to the 5th layer and in the upper layers there was hardly any formation of dots. We presume the stoppage of dot formation is due to the uneven surface of the InAlGaAs alloy overgrown on the InAs QDs, as a result of the local compositional deviations of the Group-III atoms. Samples grown with thicker barriers (>100 Å of GaAs) showed good stacking of islands until the tenth layer. The thick GaAs layer overgrown on the InAlGaAs at 590 °C is believed to remove the surface modifications of the quaternary layer thereby creating a smoother surface front for the growth of subsequent QD layers.  相似文献   

10.
Using time-resolved photoluminescence (PL) spectroscopy, we establish the presence of the Förster energy transfer mechanism between two arrays of epitaxial CdSe/ZnSe quantum dots (QDs) of different sizes. The mechanism operates through dipole–dipole interaction between ground excitonic states of the smaller QDs and excited states of the larger QDs. The dependence of energy transfer efficiency on the width of barrier separating the QD insets is shown to be in line with the Förster mechanism. The temperature dependence of the PL decay times and PL intensity suggests the involvement of dark excitons in the energy transfer process.  相似文献   

11.
Multilayered Zn–Se–Te structures grown by migration enhanced epitaxy are studied by temperature- and excitation-dependent photoluminescence (PL) as well as magneto-PL. The PL consists of two bands: a blue band, overlaid with band edge sharp lines, dominant at low temperatures and high excitation, and a green band, which appears at elevated temperature and low excitation. Upon varying excitation intensity by four orders of magnitude, the green band peak energy shifts by ∼60 meV, indicating recombination of excitons in type-II quantum dots (QDs); no significant shift is observed for the blue band. Therefore, the green emission is attributed to ZnTe/ZnSe type-II QDs, which co-exist with isoelectronic centers, responsible for the blue and band edge emissions. The existence of type-II ZnTe/ZnSe QDs is further confirmed by magneto-PL, for which the observed oscillations in the PL intensity as a function of magnetic field is explained in terms of the optical Aharonov–Bohm effect.  相似文献   

12.
A pronounced modulation is observed in the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots (QDs), recorded at low excitation densities. The clearly distinguishable peaks are identified as a multimodal distribution of the ground state transition energy, originating from a discrete, stepwise variation of the structural properties of the QDs, which is associated with an increase of the QD height in monolayer (ML) steps. The observation of a ML splitting implies a flat QD shape with well-defined upper and lower interfaces as well as negligible indium segregation. The electronic properties of the InAs/GaAs QDs were investigated by PL and PL-excitation spectroscopy and are discussed based on realistic calculations for flat InAs/GaAs QDs with a truncated pyramidal shape based on an extended 8-band k·p model. The calculations predict a red shift of the ground state transition with each additional ML, which saturates for heights above 9 ML, is in good agreement with experiment.  相似文献   

13.
Temperature-dependent photoluminescence (PL) measurements were carried out ZnSe/ZnS quantum dots (QDs) grown with post-growth interruption under a dimethylzinc (DMZn) flow. The PL spectra showed sigmoidal peak shifts and V-shaped full width at half maximum (FWHM) variations with increasing temperature, which strongly suggest that the QD structure of ZnSe/ZnS is quite similar to that of other material systems grown in the Stranski–Krastanov mode. Apparent differences are revealed as a consequence of DMZn treatment: (i) the PL spectra of ZnSe/ZnS QDs showed peaks at higher energies and persisted up to 300 K, and(ii) the minimum points of the V-shaped FWHM appear at a higher temperature compared to H2-purged ZnSe/ZnS QDs. Experimental results demonstrate the enhancement of localization energy.  相似文献   

14.
Exciton tunnelling through a ZnSe barrier layer of various thicknesses is investigated in a Zn0.72Cd0.28Se/CdSe coupled quantum well/quantum dots (QW/QDs) structure using photoluminescence (PL) spectra and near resonant pump-probe technique. Fast exciton tunnelling from quantum well to quantum dots is observed by transient differential transmission. The tunnelling time is 1.8, 4.4 and 39 ps for barrier thickness of 10, 15 and 20 nm, respectively.  相似文献   

15.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   

16.
The intermixing of Sb and As atoms induced by rapid thermal annealing (RTA) was investigated for type II GaSb/GaAs self-assembled quantum dots (QD) formed by molecular beam epitaxy growth. Just as in InAs/GaAs QD systems, the intermixing induces a remarkable blueshift of the photoluminescence (PL) peak of QDs and reduces the inhomogeneous broadening of PL peaks for both QD ensemble and wetting layer (WL) as consequences of the weakening of quantum confinement. Contrary to InAs/GaAs QDs systems, however, the intermixing has led to a pronounced exponential increase in PL intensity for GaSb QDs with annealing temperature up to 875 °C. By analyzing the temperature dependence of PL for QDs annealed at 700, 750 and 800 °C, activation energies of PL quenching from QDs at high temperatures are 176.4, 146 and 73.9 meV. The decrease of QD activation energy with annealing temperatures indicates the reduction of hole localization energy in type II QDs due to the Sb/As intermixing. The activation energy for the WL PL was found to drastically decrease when annealed at 800 °C where the QD PL intensity surpassed WL.  相似文献   

17.
We have described Stranski–Krastanow growth of multilayer In(Ga)As/GaAs QDs on Ge substrate by MBE. The growth technique includes deposition of a thin germanium buffer layer followed by migration-enhanced epitaxy (MEE) grown GaAs layer at 350°C. The MEE layer was overgrown by a thin low-temperature (475°C) grown GaAs layer with a subsequent deposition of a thick GaAs layer grown at 590°C. The sample was characterized by AFM, cross-sectional TEM and temperature-dependent PL measurements. The AFM shows dense formation of QDs with no undulation in the wetting layer. The XTEM image confirms that the sample is free from structural defects. The 8 K PL emission exhibits a 1051 nm peak, which is similar to the control sample consisting of In(Ga)As/GaAs QDs grown on GaAs substrate, but the observed emission intensity is lower. The similar slopes of Arrhenius plot of the integrated PL intensity for the as-grown QD sample grown on Ge substrate as well as for a reference QD sample grown on GaAs substrate are found to be identical, indicating a similar carrier emission process for both the samples. This in turn indicates coherent formation of QDs on Ge substrate. We presume due to the accumulated strain associated with the self-assembled growth of nanostructures on Ge that nonradiative recombination centers are introduced in the GaAs barrier in between the QD layers, which in turn degrades the overall optical quality of the sample.  相似文献   

18.
K. Hyomi 《Journal of luminescence》2009,129(12):1715-1717
We present a micro-photoluminescence (m-PL) study of electron-spin injection under magnetic fields in self-assembled semiconductor quantum dots (QDs) of CdSe. A characteristic band line-up of the CdSe QDs coupled with a diluted magnetic semiconductor quantum well (DMS-QW) of ZnCdMnSe through a ZnSe barrier layer enabled us to inject the electron spins from the DMS-QW into QDs. An experimental evidence of the electron-spin injection was provided by observations of circularly polarized m-PL spectra from individual QDs in this coupled QD structure. We find anti-correlation of PL intensity in between the DMS-QW (spin injector) and the individual QDs (spin receiver).  相似文献   

19.
Coherent InAs islands separated by GaAs spacer (d) layers are shown to exhibit self-organized growth along the vertical direction. A vertically stacked layer structure is useful for controlling the size distribution of quantum dots. The thickness of the GaAs spacer has been varied to study its influence on the structural and optical properties. The structural and optical properties of multilayer InAs/GaAs quantum dots (QDs) have been investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and photoluminescence (PL) measurements. The PL full width at half maximum (FWHM), reflecting the size distribution of the QDs, was found to reach a minimum for an inter-dots GaAs spacer layer thickness of 30 monolayers (ML). For the optimized structure, the TEM image shows that multilayer QDs align vertically in stacks with no observation of apparent structural defects. Furthermore, AFM images showed an improvement of the size uniformity of the QDs in the last layer of QDs with respect to the first one. The effect of growth interruption on the optical properties of the optimized sample (E30) was investigated by PL. The observed red shift is attributed to the evolution of the InAs islands during the growth interruption. We show the possibility of increasing the size of the QDs approaching the strategically important 1.3 m wavelength range (at room temperature) with growth interruption after InAs QD deposition.  相似文献   

20.
李文生  孙宝权 《发光学报》2009,30(5):668-672
利用分子束外延制备了三种类型量子点样品,它们分别是:未掺杂样品、n型Si调制掺杂样品和p型Be调制掺杂样品。在5 K温度下,采用共聚焦显微镜系统,测量了单量子点的光致发光谱和时间分辨光谱, 研究了单量子点中三种类型激子(本征激子、负电荷激子和正电荷激子)的电子/空穴自旋翻转时间。它们的自旋翻转时间常数分别为: 本征激子的自旋翻转时间约16 ns, 正电荷激子中电子的自旋翻转时间约2 ns, 负电荷激子中空穴的自旋翻转时间约50 ps。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号