首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(benzyl methacrylate) (PBzMA) and its copolymers exhibit lower critical solution temperature (LCST)-type phase separation in common hydrophobic ionic liquids (ILs) such as 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfone)imide ([C(2)mim][NTf2]). The turbidity measurements for PBzMA/IL mixed systems reveal that the LCST-type phase separation temperatures change significantly with the changes in the chemical structures of polymers and ILs. Moreover, cross-linked PBzMA gels show reversible and discontinuous volume phase transition in [C(2)mim][NTf2] with the changes in temperature.  相似文献   

2.
In this work, 16 kinds of [FeCl4]--based magnetic ionic liquids (ILs) with different cation structures have been designed and synthesized, and their structures are characterized by IR and Raman spectroscopy. Then the lower critical solution temperature (LCST)-type phase behavior of these magnetic ILs in water is investigated as a function of concentration. It is shown that cation structure, alkyl chain length and molar ratio of FeCl3/chloride IL have a significant influence on the LCST of the mixtures. The phase separation temperature can be tuned efficiently by these factors. Meanwhile, the LCST-type phase separation process is also investigated by dynamic light scattering. The results support the mechanism that the hydrogen bonds of the [FeCl4]- anion with water have been gradually disrupted to form ILs aggregates with increasing temperature. In addition, the stability of the ILs in water is also examined in some details. These LCST-type phase separation systems may have potential applications in extraction and separation techniques at room temperature.  相似文献   

3.
Ionic liquid/water mixtures: from hostility to conciliation   总被引:1,自引:0,他引:1  
Water was originally inimical to ionic liquids (ILs) especially in the analysis of their detailed properties. Various data on the properties of ILs indicate that there are two ways to design functions of ionic liquids. The first is to change the structure of component ions, to provide "task-specific ILs". The second is to mix ILs with other components, such as other ILs, organic solvents or water. Mixing makes it easy to control the properties of the solution. In this strategy, water is now a very important partner. Below, we summarise our recent results on the properties of IL/water mixtures. Stable phase separation is an effective method in some separation processes. Conversely, a dynamic phase change between a homogeneous mixture and separation of phases is important in many fields. Analysis of the relation between phase behaviour and the hydration state of the component ions indicates that the pattern of phase separation is governed by the hydrophilicity of the ions. Sufficiently hydrophilic ions yielded ILs that are miscible with water, and hydrophobic ions gave stable phase separation with water. ILs composed of hydrophobic but hydrated ions undergo a dynamic phase change between a homogeneous mixture and separate phases according to temperature. ILs having more than seven water molecules per ion pair undergo this phase transition. These dynamic phase changes are considered, with some examples, and application is made to the separation of water-soluble proteins.  相似文献   

4.
We describe the lower critical solution temperature(LCST)-type phase behavior of poly(butyl acrylate)(PBA) dissolved in hydrophobic 1-alkyl-3-methylimidazolium bis{(trifluoromethyl) sulfonyl}amide ionic liquids(ILs). The temperature-composition phase diagrams of these PBA/ILs systems are strongly asymmetric with the critical composition shifted to low concentrations of PBA. As the molecular weight increases from 5.0×10~3 to 2.0×10~4, the critical temperature decreases by about 67 °C, and the critical composition shifts to a lower concentration.Furthermore, the LCST of PBA/ILs system increases as increasing the alkyl side chain length in the imidazolium cation. Using IL blends as solvents,the LCST of PBA can be tuned almost linearly over a wide range by varying the mixing ratio of two ionic liquids without modifying the chemical structure of the polymers.  相似文献   

5.
Ionic liquids (ILs) with a reversible hydrophobic–hydrophilic transition were developed, and they exhibited unique phase behavior with H2O: monophase in the presence of CO2, but biphase upon removal of CO2 at room temperature and atmospheric pressure. Thus, coupling of reaction, separation, and recovery steps in sustainable chemical processes could be realized by a reversible liquid–liquid phase transition of such IL‐H2O mixtures. Spectroscopic investigations and DFT calculations showed that the mechanism behind hydrophobic–hydrophilic transition involved reversible reaction of CO2 with anion of the ILs and formation of hydrophilic ammonium salts. These unique IL‐H2O systems were successfully utilized for facile one‐step synthesis of Au porous films by bubbling CO2 under ambient conditions. The Au porous films and the ILs were then separated simultaneously from aqueous solutions by bubbling N2, and recovered ILs could be directly reused in the next process.  相似文献   

6.
We report molecular dynamics (MD) simulations of the aqueous interface of the hydrophobic [BMI][Tf2N] ionic liquid (IL), composed of 1-butyl-3-methylimidazolium cations (BMI+) and bis(trifluoromethylsulfonyl)imide anions (Tf2N-). The questions of water/IL phase separation and properties of the neat interface are addressed, comparing different liquid models (TIP3P vs TIP5P water and +1.0/-1.0 vs +0.9/-0.9 charged IL ions), the Ewald vs the reaction field treatments of the long range electrostatics, and different starting conditions. With the different models, the "randomly" mixed liquids separate much more slowly (in 20 to 40 ns) than classical water-oil mixtures do (typically, in less than 1 ns), finally leading to distinct nanoscopic phases separated by an interface, as in simulations which started with a preformed interface, but the IL phase is more humid. The final state of water in the IL thus depends on the protocol and relates to IL heterogeneities and viscosity. Water mainly fluctuates in hydrophilic basins (rich in O(Tf2N) and aromatic CH(BMI) groups), separated by more hydrophobic domains (rich in CF3(Tf2N) and alkyl(BMI) groups), in the form of monomers and dimers in the weakly humid IL phase, and as higher aggregates when the IL phase is more humid. There is more water in the IL than IL in water, to different extents, depending on the model. The interface is sharper and narrower (approximately 10 A) than with the less hydrophobic [BMI][PF6] IL and is overall neutral, with isotropically oriented molecules, as in the bulk phases. The results allow us to better understand the analogies and differences of aqueous interfaces with hydrophobic (but hygroscopic) ILs, compared to classical organic liquids.  相似文献   

7.
The effect of solute affinity on solute diffusion in binary liquids well below the lower critical solution temperature (LCST) was studied by using fluorescence correlation spectroscopy. We measured the hydrodynamic radii of a hydrophobic and an amphiphilic fluorescent dye under systematic variation of the relative molar fractions of water/2‐butoxyethanol and, for comparison, of water/methanol mixtures, which do not show phase separation. We found that the apparent hydrodynamic radius of the hydrophobic dye almost doubled in water/2‐butoxyethanol, whereas it remained largely unchanged for the amphiphilic dye and in water/methanol mixtures. Our results indicate that the translational diffusion of solutes is influenced by transient local solution structures, even at temperatures well below the LCST. We conclude that, even far below LCST, different solutes can experience different environments in binary liquid mixtures depending on both the solute and solvent properties, all of which impact their reactivity.  相似文献   

8.
The interest of using ionic liquids (ILs) as stationary phases in gas chromatography (GC) has increased in recent years. This is largely due to the fact that new classes of ILs are being developed that are capable of satisfying many of the requirements of GC stationary phases. This review highlights the major requirements of GC stationary phases and describes how molten salts/ILs can be designed to largely meet these needs. The retention characteristics of organic solutes will be discussed for ammonium, pyridinium, and phosphonium-based molten salts followed by imidazolium, pyridinium, pyrollidinium, and phosphonium-based IL stationary phases. The versatility of ILs allows for the development of stationary phases based on dicationic ILs, polymeric ILs, and IL mixtures. To aid in choosing the appropriate IL stationary phase for a particular separation, the reader is guided through the different types of stationary phases available to identify those capable of providing the desired separation selectivity of organic solutes while allowing for flexibility in ranges of temperature used throughout the separation.  相似文献   

9.
We report a molecular dynamics study of the interface between water and (macroscopically) water-immiscible room-temperature ionic liquids "ILs", composed of PF6(-) anions and butyl- versus octyl-substituted methylimidazolium+ cations (noted BMI+ and OMI+). Because the parameters used to simulate the pure ILs were found to exaggerate the water/IL mixing, they have been modified by scaling down the atomic charges, leading to better agreement with the experiment. The comparison of [OMI][PF6] versus [BMI][PF6] ILs demonstrates the importance of the N-alkyl substituent on the extent of solvent mixing and on the nature of the interface. With the most hydrophobic [OMI][PF6] liquid, the "bulk" IL phase is dryer than with the [BMI][PF6] liquid. At the interface, the OMI+ cations retain direct contacts with the bulk IL, whereas the more hydrophilic PF6(-) anions gradually dilute in the local water micro-environment and are thus isolated from the "bulk" IL. The interfacial OMI+ cations are ordered with their imidazolium moiety pointing toward the aqueous side and their octyl chains toward the IL side of the interface. With the [BMI][PF6] liquid, the system gradually evolves from an IL-rich to a water-rich medium, leading to an ill-defined interfacial domain with high intersolvent mixing. As a result, the BMI+ cations are isotropically oriented "at the interface". Because the imidazolium cations are more hydrophobic than the PF6(-) anions, the charge distribution at the interface is heterogeneous, leading to a positive electrostatic potential at the interface with the two studied ILs. Mixing-demixing simulations on [BMI][PF6]/water mixtures are also reported, comparing Ewald versus reaction field treatments of electrostatics. Phase separation is very slow (at least 30 ns), in marked contrast with mixtures involving classical organic liquids, which separate in less than 0.5 ns at the microscopic level. The results allow us to better understand the specificity of the aqueous interfaces with hydrophobic ionic liquids, compared with classical organic solvents, which has important implications as far as the mechanism of liquid-liquid ion extraction is concerned.  相似文献   

10.
Room temperature ionic liquids (IL) have been used in numerous applications in chemistry. Addition of water alters many of their properties making it possible to custom design solvents for specific applications. Along with experiments, computational studies using various approaches have provided key insights into the structure and dynamics of IL systems, as well as aggregate formation and phase behavior of the IL/water mixtures. These systems provide computational challenges since ILs and IL/water mixtures are viscous liquids with intrinsically slow processes and structural organization over surprisingly large length scales, which push the limits of applicability of the available techniques. Recent developments in the studies of IL/water mixtures using computational methodologies are reviewed and the future prospects for the field are briefly discussed.  相似文献   

11.
王伟彬  银建中 《化学进展》2008,20(4):441-449
目前已知的绿色溶剂主要包括超临界流体(Supercritical fluids,SCFs)、离子液体(Ionic liquids,ILs)、二氧化碳膨胀液体(CO2 expanded liquids, CXLs)、水以及上述溶剂的混合物等。其中,由超临界CO2(Supercritical CO2,SCCO2)与ILs混合而构成的新兴溶剂,因为化学热力学方面的特性,成为近年来研究的热点,未来很有发展前景。本文回顾了目前为止在该领域所开展的工作,总结了影响SCCO2与IL相行为的主要因素。包括温度、压力、ILs的含水量、ILs的阴离子、ILs的阳离子、ILs的摩尔体积以及助溶剂等。同时分析了ILs/SCCO2与溶质形成的多元混合物相行为的成因。介绍了ILs/CO2在萃取、反萃取、膜分离、反胶束、萃取与反应耦合等分离方面的应用。由于传统的单元操作很难满足无污染和对过程集成的要求,因而含有ILs/ SCCO2的分离反应耦合过程将是未来是实现清洁生产的发展方向。  相似文献   

12.
The separation and recycling of catalyst and cocatalyst from the products and solvents are of critical importance. In this work, a class of functionalized ionic liquids (ILs) were designed and synthesized, and by tuning the hydrophilicity and hydrophobicity of cation and anion, respectively, these ILs could reversibly transfer between water and organics triggered upon undergoing a temperature change. From a combination of multiple spectroscopic techniques, it was shown that the driving force behind the transfer was originated from a change in conformation of the PEG chain of the IL upon temperature variation. By utilizing the novel property of this class of ILs, a highly efficient and controllable CuI‐catalyzed cycloaddition reaction was achieved wherein the IL was used to entrain, activate, and recycle the catalyst, as well as to control the reaction.  相似文献   

13.
Novel aqueous multiphase systems (MuPSs) formed by quaternary mixtures composed of cholinium‐based ionic liquids (ILs), polymers, inorganic salts, and water are reported herein. The influence of several ILs, polymers, and salts was studied, demonstrating that a triple salting‐out is a required phenomenon to prepare MuPSs. The respective phase diagrams and “tie‐surfaces” were determined, followed by the evaluation of the effect of temperature. Finally, the remarkable ability of IL‐based MuPSs to selectively separate mixtures of textile dyes is shown.  相似文献   

14.
To develop ionic liquid/porous silicon (IL/pSi) microarrays we have contact pin‐printed 20 hydrophobic and hydrophilic ionic liquids onto as‐prepared, hydrogen‐passivated porous silicon (ap‐pSi) and then determined the individual IL spot size, shape and associated pSi surface chemistry. The results reveal that the hydrophobic ionic liquids oxidize the ap‐pSi slightly. In contrast, the hydrophilic ionic liquids lead to heavily oxidized pSi (i.e., ox‐pSi). The strong oxidation arises from residual water within the hydrophilic ILs that is delivered from these ILs into the ap‐pSi matrix causing oxidation. This phenomenon is less of an issue in the hydrophobic ILs because their water solubility is substantially lower.  相似文献   

15.
The iron‐containing ionic liquids 1‐butyl‐3‐methylimidazolium tetrachloroferrate(III) [C4mim][FeCl4] and 1‐dodecyl‐3‐methylimidazolium tetrachloroferrate(III) [C12mim][FeCl4] exhibit a thermally induced demixing with water (thermomorphism). The phase separation temperature varies with IL weight fraction in water and can be tuned between 100 °C and room temperature. The reversible lower critical solution temperature (LCST) is only observed at IL weight fractions below ca. 35 % in water. UV/Vis, IR, and Raman spectroscopy along with elemental analysis prove that the yellow‐brown liquid phase recovered after phase separation is the starting IL [C4mim][FeCl4] and [C12mim][FeCl4], respectively. Photometry and ICP‐OES show that about 40 % of iron remains in the water phase upon phase separation. Although the process is thus not very efficient at the moment, the current approach is the first example of an LCST behavior of a metal‐containing IL and therefore, although still inefficient, a prototype for catalyst removal or metal extraction.  相似文献   

16.
Chen Y  Ke F  Wang H  Zhang Y  Liang D 《Chemphyschem》2012,13(1):160-167
The phase separation of ionic liquids (ILs) in water is studied by laser light scattering (LLS). For the ILs with longer alkyl chains, such as [C(8)mim]BF(4) and [C(6)mim]BF(4) (mim = methylimidazolium), macroscopic phase separation occurs in the mixture with water. LLS also reveals the coexistence of the mesoscopic phase, the size of which is in the order of 100-800 nm. In aqueous mixtures of ILs with shorter alkyl chains, such as [C(4)mim]BF(4), only the mesoscopic phase exists. The mesoscopic phase can be effectively removed by filtration through a 0.22 μm filter. However, it reforms with time and can be enhanced by lowering the temperature, thus indicating that it is controlled by thermodynamics. The degree of mesoscopic phase separation can be used to evaluate the miscibility of ILs with water. This study helps to optimize the applications of ILs in related fields, as well as the recycling of ILs in the presence of water.  相似文献   

17.
The authors present a model describing the coexistence of hydrophobic association and phase separation with lower critical solution temperature (LCST) in aqueous solutions of polymers carrying short hydrophobic chains at both chain ends (telechelic associating polymers). The LCST of these solutions is found to decrease along the sol/gel transition curve as a result of both end-chain association (association-induced phase separation) and direct hydrophobic interaction of the end chains with water. The authors relate the magnitude of the LCST decrease to a hydration cooperativity parameter sigma. The LCST decreases substantially (approximately 100 K) in the case of random hydration (sigma=1), whereas only a small shift (approximately 5-10 K) occurs in the case of cooperative hydration (sigma=0.3). The molecular weight dependence of the LCST drop is studied in detail in each case. The results are compared with experimental observations of the cloud points of telechelic poly(ethylene oxide) solutions, in which random hydration predominates, and of telechelic poly(N-isopropylacrylamide) solutions, in which cooperative hydration prevails.  相似文献   

18.
An overview on specific phenomena in extraction of carboxylic acids with hydrophobic ionic liquids (ILs) based on results of new measurements with selected phosphonium, ammonium and imidazolium ILs and published data is presented. Formation of IL – acid hydrated complexes with multiple molecules of organic acid per one IL ion pair was observed. The distribution coefficient of carboxylic acids and water content in ILs strongly decreases with the increasing acid concentration. Dependence of water content in the solvent passes through a minimum at loading of IL with butyric acid of about 3. Two extraction mechanisms are involved: competitive extraction of acid and water with the release of water from the solvent and co-extraction of water with acid depending on the IL concentration. A strong synergistic effect was observed between the cation and anion of ILs enhancing their extractive properties compared to IL precursors. A new extraction model suggests the formation of water bridges and polar nano-channels which is in agreement with the molecular modelling results. ILs are nano-segregated liquids with a structure sensitive to the content of molecular compounds. Water and carboxylic acids accumulate in polar domains and dodecane in non-polar domains modifying the IL structure and decreasing the solvent phase viscosity. The hypothesis of hopping mechanism in polar channels for acid molecules transport between acid chains at IL binding sites is suggested.  相似文献   

19.
《Arabian Journal of Chemistry》2020,13(12):9090-9104
This work is the first attempt to study the physicochemical properties of ionogels - quasi-solid hybrid materials formed by ionic liquids (ILs) − 1-butyl-3-methylimidazolium (BMIm+) salts with dicyanamide- (DCA), bis(trifluoromethylsulfonyl)imide- (TFSI), and trifluoromethanesulfonate- (Otf) anions - and halloysite, a powdered clay filler with nanotube particles (at the IL:Hal molar ratio of 2:1) in order to find possible new applications of ionic liquids and industrial minerals. The electron microscopy, TG, and DSC analysis, FTIR spectroscopy, X-ray diffraction analysis, conductometry and cyclic voltammetry methods are used to investigate the anion effect on the IL interaction with halloysite. It has, for the first time, been found that the distinguishing feature of halloysite interaction with an IL determining the structural changes in the clay mineral and electrochemical characteristics of the ionogels is partial dehydration of the clay and absorption of the released water by the ionic liquid. It is shown that the halloysite dehydration effect depends on the IL hydrophilicity determined by the anion type, corresponds to the series: BMImDCA > BMImOtf > BMImTFSI. The electrochemical and thermal behaviour of ILs confined within a halloysite matrix differs from that of bulk ILs and is controlled by the anion type. Temperature dependences of the structural resistance of the halloysite filler are radically different for the ILs with high and low hydrophilicity. The effects resulting from the formation of halloysite-based ionogels can be of interest to those who develop quasi-solid ionic conductors that can work within a wide temperature range.  相似文献   

20.
Binary mixtures of two ionic liquids (ILs), 1-butyl-3-methylimidazolium chloride (BMIM-Cl) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMIM-NTf2), have been studied for the first time as gas chromatographic stationary phases. The two ILs differ only in the nature of the associated anion. The solvation parameter model was used to examine the change of solvation interactions with the IL stationary phase composition. The hydrogen bond basicity increased linearly as the stationary phase was enriched with the BMIM-Cl IL. The retention factor of short-chained alcohols increased by as much as 1100% when performing the separation on a column containing an IL mixture of 25% BMIM-NTf2/75% BMIM-Cl compared to that of the neat BMIM-NTf2 IL column. By tuning the composition of the IL-stationary phase, the separation selectivity and resolution factors of alcohols and aromatic compounds were improved. A reversal of elution order was observed for specific classes of analytes with enhancements in the stationary phase hydrogen bond basicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号