首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(methyl methacrylate) microcapsules have been prepared using the solvent evaporation technique with poly(methacrylic acid) (PMAA) as dispersant. The charge, swelling and desorption of PMAA from the microcapsules after treating the suspension with base have been followed using microelectrophoresis, X-ray photoelectron spectroscopy and quartz crystal microbalance with dissipation monitoring on model PMMA surfaces. Basic treatment of the microcapsule suspension leads to temporary colloidal stability through the introduction of charges on the PMAA chain. However, the increase in charge causes a continuous desorption of PMAA from the microcapsule surface, eventually leading to aggregation. If instead poly(diallyldimethylammonium chloride) is added to the base treated microcapsule suspension, good colloidal stability is obtained.  相似文献   

2.
We report a facile strategy for incorporating persistent and effective antibacterial property into a widely used polymer, poly(methyl methacrylate)(PMMA), by copolymerizing methyl methacrylate(MMA) with 2-(tert-butylamino)ethyl methacrylate(TA) in one pot via atom transfer radical polymerization(ATRP). The subsequent self-assembly of the resultant poly(methyl methacrylate)-block-poly[(2-tert-butylamino)ethyl methacrylate](PMMA20-b-PTA15) diblock copolymer affords well-defined water-dispersible vesicles, which can be facilely sprayed on the walls in hospitals for effective inhibition and killing of bacteria. 1H-NMR and gel permeation chromatography(GPC) studies confirmed the successful synthesis of welldefined copolymer. Transmission electron microscopy(TEM), atomic force microscopy(AFM) and dynamic light scattering(DLS) studies proved the formation of vesicles with narrow size distribution. DLS studies revealed the excellent stability of vesicles at various temperatures. Antibacterial tests showed effective antibacterial activities of polymer vesicles against both Gram-positive and Gram-negative bacteria. Moreover, this strategy may be extended for preparing a wide range of polymeric materials for facile antibacterial applications in many fields.  相似文献   

3.
The reaction of red phosphorus with poly(methyl methacrylate) under pyrolysis conditions was investigated with a number of physical techniques. A random methyl methacrylate/cyclic anhydride copolymer is formed from atatic PMMA, whereas a random methyl methacrylate/methacrylic acid copolymer is obtained with isotactic PMMA. The backbones of both these copolymers are more stable toward depolymerization than that of PMMA. The flame-retardant activity of red phosphorus with PMMA may arise in part from stabilization of the polymer toward depolymerization via modification of the sidechains.  相似文献   

4.
The in situ ATRP (atom transfer radical polymerization) "grafting from" approach was successfully applied to graft poly(methyl methacrylate) (PMMA) onto the convex surfaces of multiwalled carbon nanotubes (MWNT). The thickness of the coated polymer layers can be conveniently controlled by the feed ratio of MMA to preliminarily functionalized MWNT (MWNT-Br). The resulting MWNT-based polymer brushes were characterized and confirmed with FTIR, 1H NMR, SEM, TEM, and TGA. Moreover, the approach has been extended to the copolymerization system, affording novel hybrid core-shell nanoobjects with MWNT as the core and amphiphilic poly(methyl methacrylate)-block-poly(hydroxyethyl methacrylate) (PMMA-b-PHEMA) as the shell. The approach presented here may open an avenue for exploring and preparing novel carbon nanotubes-based nanomaterials and molecular devices with tailor-made structure, architecture, and properties.  相似文献   

5.
Communication: A diblock copolymer consisting of poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) with hydroxyl group at one end is prepared by successive charge transfer polymerization (CTP) under UV irradiation at room temperature using ethanolamine and benzophenone as a binary initiation system. The diblock copolymer PMMA‐b‐PVAc could be selectively hydrolyzed to the block copolymer of poly(methyl methacrylate) and poly(vinyl alcohol) (PVA) using sodium ethoxide as the catalyst. Both copolymers, PMMA‐b‐PVAc and PMMA‐b‐PVA, are characterized in detail by means of FTIR and 1H NMR spectroscopy, and GPC. The effect of the solvent on CTP and the kinetics of CTP are discussed.  相似文献   

6.
Peng J  Xuan Y  Wang H  Yang Y  Li B  Han Y 《The Journal of chemical physics》2004,120(23):11163-11170
We have studied the surface morphology of symmetric poly(styrene)-block-poly(methyl methacrylate) diblock copolymer thin films after solvent vapor treatment selective for poly(methyl methacrylate). Highly ordered nanoscale depressions or striped morphologies are obtained by varying the solvent annealing time. The resulting nanostructured films turn out to be sensitive to the surrounding medium, that is, their morphologies and surface properties can be reversibly switchable upon exposure to different block-selective solvents.  相似文献   

7.
Photoconductive poly(4-butyltriphenylamine) particles were prepared by a chemical oxidative dispersion polymerization. The utilization of statistical copolymer of methyl methacrylate with 2-hydroxyethyl methacrylate (30:70) as a dispersant afforded particles with the narrowest distribution when the other experimental conditions such as the rate of monomer feed, and the dispersant concentration were appropriately selected. Porous particles were obtained at 40 °C using poly(vinyl pyrrolidone) as a dispersant.  相似文献   

8.
The random coil conformation of an isolated conventional synthetic polymer chain was clearly imaged by atomic force microscopy (AFM). The sample used was a poly(styrene)-block-poly(methyl methacrylate) diblock copolymer. A very dilute solution of the copolymer with benzene was spread on a water surface. The structure thus formed on water was subsequently transferred and deposited onto mica at various surface pressures and observed under AFM. The AFM images obtained with films deposited at a low surface pressure (<0.1 mN/m) showed a single polystyrene (PS) block chain aggregated into a single PS particle with a single poly(methyl methacrylate) (PMMA) block chain emanating from the particle. Immediately after the deposition, the single PMMA block chain aggregated to form a condensed monolayer around the polystyrene particles. However, after exposing the deposited film to highly humid air for 1 day, the PMMA chains spread out so that the single PMMA block chain could be identified as a random coil on the substrate. The thin water layer formed on the mica substrate in humid air may enable the PMMA block chain to be mobilized on the substrate, leading to the conformational rearrangement from the condensed monolayer conformation to an expanded and elongated coil. The elongation of the PMMA chain was highly sensitive to the humidity; the maximum elongation was obtained at 79% relative humidity. The elongation was a slow process and took about 20 h.  相似文献   

9.
丁二烯-甲基丙烯酸甲酯嵌段共聚物的阴离子聚合及表征   总被引:1,自引:0,他引:1  
讨论了用阴离子方法进行了二烯与甲基丙烯酸甲酯共聚合的过程,并用GPC、FTIR、NMR和动态粘弹谱对共聚物进行了表征.证明所得聚合物为具有较高分子量、窄分布的二嵌段共聚物.  相似文献   

10.
The poly(HEMA‐co‐MMA‐g‐PMMA) graft copolymer was prepared with a poly(methyl methacrylate) (PMMA) macromonomer, 2‐hydroxyethyl methacrylate (HEMA), and methyl methacrylate (MMA), and its application as a dispersant for the nonaqueous phase dispersion polymerization of polystyrene (PST) was investigated. Monodisperse PST particles were obtained with two‐dimensionally tailored graft copolymers, with the number of grafted chains controlled and the polar component (HEMA) in the backbone chains balanced. As for the reactor, a stirred vessel with moderate agitation yielded uniform polymer particles, whereas sealed glass ampules with an overturning motion yielded broader size distributions. Increasing the polarity of the solvent in the continuous phase yielded smaller polymer particles with a gradual deterioration of monodispersity. Uniform polymer particles with a coefficient of variation of less than 6% were obtained up to 30 wt % solid contents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1788–1798, 2003  相似文献   

11.
On heating at volatilisation temperatures, poly(methyl methacrylate) (PMMA) and diethoxyphosphonated poly(methyl methacrylate) (Ph.PMMA) behave differently in the very early stage of the degradation process. The volatilisation rate of PMMA decreases slowly with conversion whereas Ph.PMMA polymers volatilise at a high initial rate which decreases quickly with conversion.The overall volatilisation rate of Ph.PMMA polymers in this stage is much lower than that of PMMA. This is attributed to the formation of anhydride in degrading Ph.PMMA by intramolecular cyclisation which forms high boiling chain fragments.  相似文献   

12.
Interpenetrating polymer network (IPN) hydrogel composed of hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) and hydrophobic poly(methyl methacrylate) (PMMA) were synthesized by sequential IPN method using γ-rays from 60Co source. Compared with pure PNIPAAm hydrogel, PNIPAAm/ PMMA IPN hydrogel not only behaved with obvious temperature sensitivity, but also had higher mechanical strength. The shrinking rate of the prepared IPN hydogel was slower than that of PNIPAAm hydrogel and the relative shrinkage was higher than that of PNIPAAm hydrogel. The IPN hydrogel with less PMMA was not stable while with more PMMA it was quite stable. In addition, the release of Methylene Blue (MB) from the IPN hydrogel was slower than that from PNIPAAm hydrogel as well.  相似文献   

13.
Amphiphilic block copolymers of methyl methacrylate (MMA) and sodium styrene sulfonate (SSNa) were successfully synthesized via direct atom transfer radical polymerization (ATRP) of SSNa. First, poly(sodium styrene sulfonate) (PSSNa) or poly(methyl methacrylate) (PMMA) macroinitiators were prepared using proper ATRP systems for each case. In some cases, functional initiators, which allow further reactions, were used. The macroinitiators were characterized and further used to synthesize PSSNa/PMMA block copolymers, by using proper solvent combinations, such as N,N-dimethylformamide/water or methanol/water at appropriate volume ratios, in order to ensure solubility of the synthesized amphiphilic copolymers. The molecular weight of the copolymers was determined by gel permeation chromatography, using water as eluent. By using a combination of analytical techniques like 1H NMR, FTIR and thermogravimetry, the chemical structure and the actual copolymer composition were determined. Since, the block copolymers were soluble in water, forming hydrophilic/hydrophobic domains in aqueous solution, their micellization behavior was further studied by pyrene fluorescence probing.  相似文献   

14.
纳米复合材料具有许多优异的性能,但是由于纳米粒子常常很难以纳米尺寸均匀地分散在基体中,有时即使实现了纳米级分散,在后加工或应用过程中又会发生二次团聚,使得纳米材料的特性不能充分发挥.因此,要获得性能优异的纳米复合材料首先必须解决纳米材料在基体中的均匀、稳定分散问题.  相似文献   

15.
Summary: The present paper analyzes the production of poly(methyl methacrylate) – PMMA – nanoparticles loaded with benzophenone-3 through miniemulsion polymerization. The obtained product is homogeneous and stable, allowing for preparation of photo-protective formulations. It is observed in particular that bezophenone-3 interacts with the reacting system, promoting the growth of the PMMA chains produced in miniemulsion.  相似文献   

16.
Qu S  Chen X  Chen D  Yang P  Chen G 《Electrophoresis》2006,27(24):4910-4918
A novel method for the rapid fabrication of poly(methyl methacrylate) (PMMA) microfluidic chips using poly(dimethylsiloxane) (PDMS) templates has been demonstrated. The PDMS molds were fabricated by soft lithography. The dense prepolymerized solution of methyl methacrylate containing thermal and UV initiators was allowed to polymerized between a PDMS template and a piece of a 1 mm thick commercial PMMA plate under a UV lamp. The images of microchannels on the PDMS template were precisely replicated into the synthesized PMMA substrates during the UV-initiated polymerization of the prepolymerized solution on the surface of the PMMA plate at room temperature. The polymerization could be completed within 10 min under ambient temperature. The chips were subsequently assembled by thermal bonding of the channel plate and the cover sheet. The new fabrication method obviates the need for specialized replication equipment and reduces the complexity of prototyping and manufacturing. Nearly 20 PMMA chips were replicated using a single PDMS mold. The attractive performance of the new microfluidic chips has been demonstrated by separating and detecting cations in connection with contactless conductivity detection. The fabricated PMMA microchip has also been successfully employed for the determination of potassium and sodium in environmental and biological samples.  相似文献   

17.
Abstract

Polymer electrolytes based on blends of poly(ethylene oxide) (PEO) with various stereoisomers of poly(methyl methacrylate) (PMMA) were studied by means of impedance spectroscopy and DSC. It was found that isotactic poly(methyl methacrylate) (1PMMA)-based electrolytes exhibit ambient temperature conductivities at least one order of magnitude higher than the electrolytes containing other stereoisomers of PMMA. The highest value of room temperature conductivity equal to 9 × 10?5 S/cm was measured for a sample containing 30 wt% IPMMA. The effect observed results from the presence of a flexible amorphous phase in PEO-IPMMA blends which is favorable for fast ionic transport. A small increase of ionic conductivity with decreasing molecular weight of the added atactic poly(methyl methacrylate) was also observed.  相似文献   

18.
Effects of adding a small amount of poly(methyl methacrylate)-block-poly(vinyl acetate) (PMMA-b-PVAc) to poly(methyl methacrylate)/poly(vinyl acetate) (PMMA/PVAc) blends with a lower critical solution temperature (LCST) phase diagram on the kinetics of late-stage spinodal decomposition (SD) were investigated by time-resolved light scattering at 160°C. It is found that the coarsening process of the structure was slowed down or accelerated upon addition of PMMA-b-PVAc depending on the composition of the block copolymer and the blend. The effect of the block copolymer on the domain size were interpreted as compatibilizing and incompatibilizing effects of the block copolymer on PMMA/PVAc blends based on the evaluation of changes in the stability limits of PMMA/PVAc with the addition of block copolymer using random phase approximation (RPA).  相似文献   

19.
Dispersion of fullerene, C60, by addition of polymethacrylate dispersant in methyl methacrylate (MMA) and incorporation of C60 into poly(methyl methacrylate) (PMMA) were investigated. Copolymers synthesized by radical copolymerization of MMA and 2-naphthyl methacrylate (NMA), poly(MMA-co-NMA), effectively dispersed C60 in MMA to form clusters of 20?nm. In these cases, addition of minimal 110 naphthyl groups per unit C60 molecule afforded to give clusters with minimum of 20?nm sizes. Furthermore, block copolymers, poly(MMA-b-NMA) with MMA/NMA mole ratio from 12:1 to 20:1, also efficiently dispersed C60 to give formation of clusters of 20?nm size by addition of minimal 40 naphthyl groups per unit C60 molecule, which was corresponding to approximate nine layers of naphthyl group in block copolymer adsorbed on the surface of the cluster. Hybrid films of C60/PMMA, prepared by casting of C60-dispersed solution containing PMMA, exhibited absorbance at 400?nm linearly increased with C60 content.  相似文献   

20.
Samples of low-molecular-weight polystyrene (PS) in poly(methyl methacrylate) (PMMA) were prepared by first dissolving PS in methyl methacrylate monomer and then polymerizing the monomer. Forty-three specimens of varying number-average molecular weight (2100–49,000) and composition (5–40 wt %) of PS were prepared, and the surface morphology and phase relationships studied by scanning electron microscopy. Four distinct types of phase relationships were observed: (i) a single phase consisting of PS dissolved in PMMA; (ii) PS dispersed in PMMA; (iii) PMMA dispersed in PS; and (iv) regions of PS dispersed in PMMA coexisting with regions of PMMA dispersed in PS. Values of the size and population density of the dispersed particles are reported. Finally, the size and distribution of the dispersed particles and the various types of phase relationships are discussed in terms of the ternary polystyrene/poly(methyl methacrylate)/methyl methacrylate phase diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号