首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and fast high‐performance liquid chromatography–electrospray ionization–MS/MS method for the simultaneous quantitation of levodopa and carbidopa in human plasma was developed and validated. A simple protein precipitation step with perchloric acid was used for the cleanup of plasma, and methyldopa was added as an internal standard. The analyses were carried out using an ACE C18 column (50 × 4.6 mm i.d.; 5 µm particle size) and a mobile phase consisting of 0.2% formic acid and acetonitrile (90:10). The triple‐quadrupole mass spectrometer equipped with an electrospray source in positive mode was set up in the selective reaction monitoring mode to detect the ion transitions m/z 198.1 → m/z 107.0, m/z 227.2 → m/z 181.0, and m/z 212.1 → m/z 139.2 for levodopa, carbidopa, and methyldopa, respectively. The method was validated and proved to be linear, accurate, and precise over the range 50–5000 ng/mL for levodopa and 3–600 ng/mL for carbidopa. The proposed method was successfully applied in a pharmacokinetic study with a levodopa/carbidopa tablet formulation in healthy volunteers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A simple, highly sensitive and rapid method for quantification of olprinone (phosphodiesterase 3 inhibitor) in rabbit plasma using liquid chromatography–tandem mass spectrometry with electrospray was developed. An aliquot of 50 μL of plasma sample was cleaned up and extracted using Ostro? 96‐well plate followed by dilution. Chromatographic separation of olprinone and olprinone‐d3 was carried out on a CORTECS® T3 column within 3 min. Detection was achieved using a triple quadrupole mass spectrometer employing electrospray ionization operated in positive ion multiple reaction monitoring mode using the transitions m/z 251.07 → m/z 155.06 and m/z 254.21 → m/z 158.10 for olprinone and olprinone‐d3, respectively. The method was validated according to US Food and Drug Administration guideline for bioanalytical methods, and showed excellent linearity in the range 10.0–2000.0 ng/mL with coefficient of determination >0.99. The intra‐ and inter‐day precisions (CV) were <5.1% and the accuracies were within the range 99.7–103.2% at all quality control concentrations. Furthermore, olprinone was stable under various stability conditions. The developed method was used for quantification of olprinone in rabbit plasma after its intravenous administration at the dose of 1 mg/kg in order to better understand the metabolism of olprinone in a rabbit model of lung injury.  相似文献   

3.
A rapid and sensitive analytical method based on liquid chromatography coupled to tandem mass spectrometry detection with positive ion electrospray ionization was developed for the determination of febuxostat in human plasma using d7‐febuxostat as the internal standard (IS). A simple protein precipitation was performed using acetonitrile. The analyte and IS were subjected to chromatographic analysis on a Capcell PAK C18 column (4.6 × 100 mm, 5 µm) using acetonitrile–5 mm ammonium acetate–formic acid (85:15:0.015, v/v/v) as the mobile phase at a flow rate of 0.6 mL/min. An Agilent 6460 electrospray tandem mass spectrometer was operated in the multiple reaction monitoring mode. The precursor‐to‐product ion transitions m/z 317 → m/z 261 (febuxsotat) and m/z 324 → m/z (261 + 262) (d7‐febuxostat, IS) were used for quantitation. The results were linear over the studied range (10.0–5000 ng/mL), and the total analysis time for each chromatograph was 3 min. The intra‐ and inter‐day precisions were less than 7.9 and 7.2%, respectively, and the accuracy was within ±4.2%. No evidence of analyte instability in human plasma was observed storage at ?20°C for 31 days. This method was successfully applied in the determination of febuxostat concentrations in plasma samples from healthy Chinese volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid and sensitive liquid chromatography hyphenated with electrospray ionization tandem mass spectrometric method (LC–ESI–MS/MS) was developed and validated for simultaneous determination of evobrutinib and evobrutinib‐diol in dog plasma. The plasma sample was processed using acetonitrile and chromatographic separation was carried out on a Waters Acquity BEH C18 column (50 × 2.1 mm, 1.7 μm). The mobile phase was composed of 0.1% formic acid and acetonitrile, with an optimized gradient elution at a flow rate of 0.4 mL/min. Detection was accomplished in selective reaction monitoring mode via electrospray ionization interface operated in positive ion mode. The precursor‐to‐product transitions for quantification were m/z 430.2 → 98.1 for evobrutinib, m/z 464.2 → 98.1 for evobrutinib‐diol and m/z 441.2 → 138.1 for ibrutinib (internal standard). The developed assay was linear over the tested concentration ranges with correlation coefficient >0.995. The LLOQ was 0.1 ng/mL for both analytes. The inter‐ and intra‐day precisions were <9.65% and the accuracy ranged from ?3.94 to 6.37%. The extraction recovery was >85.41% and no significant matrix effect was observed. The developed assay was successfully applied to the pharmacokinetic study of evobrutinib and evobrutinib‐diol in dogs after oral administration of evobrutinib at a single dose of 5 mg/kg.  相似文献   

5.
A sensitive, rapid and simple liquid chromatography–electrospray ionization mass spectrometry (LC‐ESI‐MS/MS) method was developed for the quantitative determination of cyclobenzaprine in human plasma, to study the pharmacokinetic behavior of cyclobenzaprine capsule in healthy Chinese volunteers. With escitalopram as the internal standard (IS), sample pretreatment involved a one‐step liquid–liquid extraction using saturated sodium carbonate solution and hexane–diethyl ether (3:1, v/v). The separation was performed on an Ultimate XB‐CN column (150 × 2.1 mm, 5 µm). Isocratic elution was applied using acetonitrile–water (40:60, v/v) containing 10 m M ammonium acetate and 0.1% formic acid. The detection was carried out on a triple‐quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionization. The ion‐pairs including m/z 276.2–216.2 for cyclobenzaprine and m/z 325.2–109.1 for IS were used for monitoring. Linear calibration curves were obtained over the range of 0.049–29.81 ng/mL with the lower limit of quantification at 0.049 ng/mL. The intra‐ and inter‐day precision showed ≤6.5% relative standard deviation. The established method laid the groundwork for follow‐up studies and provided basis for the clinical administration of cyclobenzaprine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A simple, specific and sensitive LC‐MS/MS method was developed and validated for the determination of mesalazine in beagle dog plasma. The plasma samples were prepared by protein precipitation, then the separation of the analyte was achieved on a Waters Spherisorb C6 column (150 × 4.6 mm, 5 µm) with a mobile phase consisting of 0.2% formic acid in water–methanol (20:80, v/v). The flow rate was set at 1.0 mL/min with a split ratio of 3:2. Mass spectrometric detection was achieved by a triple‐quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. Quantitation was performed using selected reaction monitoring of precursor–product ion transitions at m/z 154 → m/z 108 for mesalazine and m/z 285 → m/z 193 for diazepam (internal standard). The linear calibration curve of mesalazine was obtained over the concentration range 50–30,000 ng/mL. The matrix effect of mesalazine was within ±9.8%. The intra‐ and inter‐day precisions were <7.9% and the accuracy (relative error) was within ±3.5%. The validated method was successfully applied to investigate the pharmacokinetics of mesalazine in healthy beagle dogs after rectal administration of mesalazine suppository. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A rapid, sensitive and specific method using liquid chromatography with tandem mass spectrometric detection (LC‐MS) was developed for the analysis of sauchinone in rat plasma. Di‐O‐methyltetrahydrofuriguaiacin B was used as internal standard (IS). Analytes were extracted from rat plasma by liquid–liquid extraction using ethyl acetate. A 2.1 mm i.d. × 150 mm, 5 µm, Agilent Zorbax SB‐C18 column was used to perform the chromatographic analysis. The mobile phase was methanol–deionized water (80:20, v/v). The chromatographic run time was 7 min per injection and the flow‐rate was 0.2 mL/min. The tandem mass spectrometric detection mode was achieved with electrospray ionization interface in positive‐ion mode (ESI+). The m/z ratios [M + Na]+, m/z 379.4 for sauchinone and m/z 395.4 for IS were recorded simultaneously. Calibration curve were linear over the range of 0.01–5 µg/mL. The lowest limit of quantification was 0.01 µg/mL. The intra‐day and inter‐day precision and accuracy of the quality control samples were 2.94–9.42% and 95.79–108.05%, respectively. The matrix effect was 64.20–67.34% and the extraction recovery was 93.28–95.98%. This method was simple and sensitive enough to be used in pharmacokinetic research for determination of sauchinone in rat plasma. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A simple and fast liquid chromatography–tandem mass spectrometry method was established and validated for the simultaneous determination of tenofovir alafenamide (TAF) and tenofovir (TNF) in human plasma. A simple protein precipitation procedure was employed to extract analytes from plasma. Chromatographic separation was performed on an Eclipse Plus C18 column utilizing a fast gradient elution starting with 2% of 2 mM ammonium acetate–formic acid (100/0.1, v/v) followed by increasing the percentage of acetonitrile. Detection was performed on a tandem mass spectrometer equipped with an electrospray ionization source operated in the positive ionization mode, using the transitions m/z 477.2 → m/z 346.1 for TAF and m/z 288.1 → m/z 176.1 for TNF. TAF-d5 and TNF-d7 were used as the internal standard of TAF and TNF, respectively. The method was validated in the concentration ranges 1.25–500 ng/mlfor TAF and 0.300–15.0 ng/ml for TNF with acceptable accuracy and precision.  相似文献   

9.
Celosin A (CA), a natural compound isolated from Celosia argentea L., has been shown significant hepatoprotective effect on AHNP‐induced liver injury. This study described a rapid and sensitive ultra‐high‐pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) assay for determination of CA in rat plasma. Methanol‐mediated precipitation was used for sample pretreatment. Chromatographic separation was achieved on a T3 column with gradient elution using water and acetonitrile as mobile phase. Determination was obtained using an electrospray ionization source in negative selected reaction monitoring mode at the transitions of m/z 793.3 → m/z 661.2 and m/z 955.6 → m/z 793.2 for CA and IS, respectively. The assay was linear over the concentration range 0.25–2500 ng/mL (r > 0.995) with a lowest limit of quantification (LLOQ) of 0.25 ng/mL. The intra‐ and inter‐day precisions (RSD) were 1.65–9.84 and 2.46–13.49%, respectively, while accuracy (RR) ranged from 96.21 to 99.45%, respectively. The recovery ranged from 95.09 to 102.22% and the matrix effect from 98.29 to 100.13%. The analyte was stable under the tested storage conditions. The method has been successfully applied to a preclinical pharmacokinetic study in rats after a single intravenous (2 mg/kg) or oral (50 mg/kg) administration. The oral bioavailability of CA was ~1.94%; in addition, there was no difference between male and female rats. This is the first time of the use of an UHPLC–MS/MS method for determination of CA concentration in rat plasma and for evaluation of its pharmacokinetic behavior.  相似文献   

10.
Monitoring the plasma concentrations of metformin and sodium‐glucose cotransporter‐2 inhibitors (canagliflozin, dapagliflozin and empagliflozin) is essential for pharmacokinetic and bioequivalence studies and therapeutic monitoring. The present work therefore aimed to develop and validate a high‐performance liquid chromatography coupled to tandem mass spectrometry (HPLC–MS/MS) method for the simultaneous quantification of these drugs in human plasma. The analyses were performed using an Agilent 1200 HPLC system coupled to an Applied Biosystems API 3200 triple quadrupole MS/MS with electrospray ionization in positive ion mode. After one‐step protein precipitation of plasma with acetonitrile containing 0.1% formic acid, chromatographic separation was achieved on an Xbridge C18 column, with a mobile phase consisting of a gradient of water and acetonitrile, both containing 1 mm ammonium formate and 0.1% formic acid. Quantification was performed in multiple reaction monitoring mode using m/z 130.1 → 71.1 for metformin, m/z 462.0 → 191.2 for canagliflozin, m/z 426.1 → 167.1 for dapagliflozin and m/z 468.0 → 354.9 for empagliflozin. The proposed method was validated and demonstrated to be adequate for the quantification of metformin, canagliflozin, dapagliflozin and empagliflozin for clinical monitoring, pharmacokinetics and bioequivalence studies.  相似文献   

11.
A high‐throughput, specific, and rapid liquid chromatography with tandem mass spectrometry method was established and validated for the simultaneous determination of atorvastatin and its two major metabolites, ortho‐hydroxyatorvastatin and para‐hydroxyatorvastatin, in human plasma. A simple salting‐out‐assisted liquid–liquid extraction using acetonitrile and a mass‐spectrometry‐friendly salt, ammonium acetate, was employed to extract the analytes from human plasma. A recovery of more than 81% for all analytes was achieved in 1 min extraction time. Chromatographic separation was performed on a Kinetex XB C18 column utilizing a gradient elution starting with a 60% of water solution (1% formic acid), followed by increasing percentages of acetonitrile. Analytes were detected on a tandem mass spectrometer equipped with an electrospray ionization source that was operated in the positive mode, using the transitions of m/z 559.3 → m/z 440.2 for atorvastatin, and m/z 575.3 → m/z 440.2 for both ortho‐ and para‐hydroxyatorvastatin. Deuterium‐labeled compounds were used as the internal standards. The method was validated over the concentration ranges of 0.0200–15.0 ng/mL for atorvastatin and ortho‐hydroxyatorvastatin, and 0.0100–2.00 ng/mL for para‐hydroxyatorvastatin with acceptable accuracy and precision. It was then successfully applied in a bioequivalence study of atorvastatin.  相似文献   

12.
An improved, precise and reliable ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the quantification of trimetazidine, using trimetazidine‐d8 as the internal standard (IS). Interference owing to plasma phospholipids during sample preparation was overcome using a hybrid solid‐phase extraction–phospholipid ultra cartridge. The mean extraction recovery of trimetazidine (98.66%) and trimetazidine‐d8 (97.63%) from spiked plasma was consistent and reproducible. Chromatographic analysis was performed on a UPLC Ethylene Bridged Hybrid (BEH) C18 (50 × 2.1 mm, 1.7 μm) column with isocratic elution using acetonitrile–5 mm ammonium formate, pH 3.5 (40:60, v/v) as the mobile phase. The parent → product ion transitions for trimetazidine (m/z 267.1 → 181.1) and trimetazidine‐d8 (m/z 275.2 → 181.1) were monitored on a triple quadrupole mass spectrometer with electrospray ionization functioning in the positive multiple reaction monitoring mode. The linearity of the method was established in the concentration range of 0.05–100 ng/mL for trimetazidine. The intra‐batch and inter‐batch accuracy and precision (CV) were 97.3–103.1 and 1.7–5.3%, respectively. Qualitative and quantitative assessment of matrix effect showed no interference of endogenous/exogenous components. The developed method was used to measure plasma trimetazidine concentration for a bioequivalence study with 12 healthy subjects.  相似文献   

13.
A sensitive and selective liquid chromatography mass spectrometry method for determination of curdione in rabbit plasma was developed. After addition of tramadol as internal standard (IS), protein precipitation by acetonitrile was used for sample preparation. Chromatographic separation was achieved on a Zorbax SB‐C18 (2.1 × 50 mm, 3.5 µm) column with acetonitrile–0.1% formic acid as mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive‐ion mode; selective ion monitoring was used for quantification using target fragment ions m/z 237 for curdione and m/z 264 for the IS. Calibration plots were linear over the range of 20–4000 ng/mL for curdione in plasma. The lower limit of quantification for curdione was 20 ng/mL. Mean recovery of curdione from plasma was in the range 94.3–98.4%. The RSD of intra‐day and inter‐day precision were both less than 9%. This method is simple and sensitive enough to be used in pharmacokinetic research for the determination of curdione in rabbit plasma. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
We established a rapid and simple liquid chromatography with tandem mass spectrometry method for the simultaneous determination of sarpogrelate and its active metabolite, M‐1, in human plasma. Sarpogrelate, M‐1, and the internal standard, ketanserin, were extracted from a 50 μL aliquot of human plasma by protein precipitation using acetonitrile. Chromatographic separation was performed on a Shim‐pack GIS ODS C18 column (100 × 3.0 mm; 3 μm) with an isocratic mobile phase consisting of 10 mM ammonium acetate and acetonitrile (70:30, v/v) at a flow rate of 0.6 mL/min; the total run time was <2.5 min. Mass spectrometric detection was conducted in selected reaction‐monitoring mode with positive electrospray ionization at m/z 430.35 → 135.10 for sarpogrelate, m/z 330.30 → 58.10 for M‐1, and m/z 395.70 → 188.85 for ketanserin. The linear ranges of concentration for sarpogrelate and M‐1 were 1–1000 and 0.5–500 ng/mL, respectively. The coefficient of variation for the assay's precision was ≤9.95%, and the accuracy was 90.6–107%. All analytes were stable under various storage and handling conditions, and no relevant crosstalk and matrix effect was observed. This method was successfully applied to a pharmacokinetic study after oral administration of a 100 mg sarpogrelate tablet to healthy male Korean volunteers.  相似文献   

15.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

16.
A sensitive, selective and robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of miglitol in rat plasma. The sample preparation procedures involved protein precipitation and unique solid‐phase extraction, which efficiently removed sources of ion suppression and column degradation interference present in the plasma. Chromatographic separation was achieved on an amide column using 10 mmol/L CH3COONH4 and CH3CN:CH3OH (90:10, v/v) as the mobile phase under gradient conditions. Detection was performed using tandem mass spectrometry equipped with an electrospray ionization interface in positive ion mode.The selected reaction monitoring transitions for miglitol and a stable isotope‐labeled internal standard were m/z 208 → m/z 146 and m/z 212 → m/z 176, respectively. The correlation coefficients of the calibration curves ranged from 0.9984 to 0.9993 over a concentration range of 0.5–100 ng/mL plasma. The quantification limit of the proposed method was more than 10 times lower than those of previously reported LC‐MS/MS methods. The novel method was successfully validated and applied to a pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, sensitive and specific method using ultraperformance liquid chromatography/tandem mass spectrometry (UPLC‐MS/MS) was developed to determine sunitinib and N‐desethyl sunitinib in mouse plasma and tissues. The analytes were separated by an isocratic mobile phase consisting of acetonitrile and buffer solution (water with 0.1% formic acid and 5 m m ammonium acetate; 40: 60, v/v) running at a flow rate of 0.35 mL/min for 2 min. Quantification was performed using a mass spectrometer by multiple reaction monitoring in positive electrospray ionization mode. The transition was monitored at m/z 399 → 283, m/z 371 → 283 and m/z 327 → 270 for sunitinib, N‐desethyl sunitinib and internal standard, respectively. Calibration curves were linear over concentration ranges of 2–500, 0.5–50 and 1–250 ng/mL for plasma, heart and other biosamples. The method was successfully applied to animal experiments. The pharmacokinetic study indicated that sunitinib was eliminated quickly in mice with a half‐life of 1.2 h; tissue distribution data showed more sunitinib and its metabolite in liver, spleen and lung, which provided reference for further study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the determination of terbinafine in human plasma. The method employed liquid–liquid extraction of terbinafine and terbinafine‐d7 (used as internal standard) from 100 μL human plasma with ethyl acetate–n‐hexane (80:20, v/v) solvent mixture. Chromatography was performed on a BEH C18 (50 × 2.1 mm, 1.7 μm) column using acetonitrile–8.0 mm ammonium formate, pH 3.5 (85:15, v/v) under isocratic elution. For quantitative analysis, MS/MS ion transitions were monitored at m/z 292.2/141.1 and m/z 299.1/148.2 for terbinafine and terbinafine‐d7, respectively, using electrospray ionization in the positive mode. The method was validated according to regulatory guidance for selectivity, sensitivity, linearity, recovery, matrix effect, stability, dilution reliability and ruggedness with acceptable accuracy and precision. The method shows good linearity over the tested concentration range from 1.00 to 2000 ng/mL (r2 ≥ 0.9984). The intra‐batch and inter‐batch precision (CV) was 1.8–3.2 and 2.1–4.5%, respectively. The method was successfully applied to a bioequivalence study with 250 mg terbinafine in 32 healthy subjects. The major advantage of this method includes higher sensitivity, small plasma volume for processing and a short analysis time.  相似文献   

19.
A rapid and sensitive LC‐MS/MS method was developed for the determination of linarin in small‐volume rat plasma and tissue sample. Sample preparation was employed by the combination of protein precipitation (PPT) and liquid–liquid extraction (LLE) to allow measurement over a 5‐order‐of‐magnitude concentration range. Fast chromatographic separation was achieved on a Hypersil Gold column (100 × 2.1 mm i.d., 5 µm). Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray ionization interface operating in positive ionization mode. Quantification was performed using selected reaction monitoring of precursor‐product ion transitions at m/z 593 → 285 for linarin and m/z 447 → 271 for baicalin (internal standard). The total run time was only 2.8 min per sample. The calibration curves were linear over the concentration range of 0.4–200 µg/mL for PPT and 0.001–1.0 µg/mL for LLE. A lower limit of quantification of 1.0 ng/mL was achieved using only 20 μL of plasma or tissue homogenate. The intra‐ and inter‐day precisions in all samples were ≤14.7%, while the accuracy was within ±5.2% of nominal values. The validated method has been successfully applied to pharmacokinetic and tissue distribution study of linarin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Ikarisoside A is a natural flavonoid isolated from Epimedium plants. To further evaluate its medicinal potential, a sensitive and robust LC–MS/MS method was developed and validated for the assay of ikarisoside A in rat plasma. Orientin was used as an internal standard. The electrospray ionization was operated in its negative ion mode while ikarisoside A and IS were measured by selected reaction monitoring using precursor‐to‐product ion transitions of m/z 499.1 → 353.0 and m/z 446.9 → 327.6, respectively. This LC–MS/MS method had good sensitivity (LLOQ = 1.5 ng/mL), accuracy (both intra‐ and inter‐day RE ≤ ±11.9%) and precision (both intra‐ and inter‐day RSD ≤8.5%). The pharmacokinetics of ikarisoside A was subsequently profiled in Sprague–Dawley rats. Following oral administration (35 mg/kg), ikarisoside A reached maximum plasma concentration (Cmax, 207.6 ± 96.7 ng/mL) attained at 1.10 ± 0.42 h. Following oral administration, the clearance and terminal half‐life were 42.9 ± 26.5 L/h/kg and 3.15 ± 0.80 h by oral route, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号