首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of oxidation of a non-steroidal analgesic drug, aspirin (ASP) by diperiodatocuprate(III)(DPC) in the presence and absence of osmium(VIII) have been investigated at 298 K in alkaline medium at a constant ionic strength of 0.10 mol dm−3 spectrophotometrically. The reaction showed a first-order in [DPC] and less than unit order in [ASP] and [alkali] for both the osmium(VIII) catalysed and uncatalysed reactions. The order with respect to Os(VIII) concentration was unity. The effects of added products, ionic strength, periodate and dielectric constant have been studied. The stoichiometry of the reaction was found to be 1:4 (ASP:DPC) for both the cases. The main oxidation product of aspirin was identified by spot test, IR, NMR and GC–MS. The reaction constants involved in the different steps of the mechanisms were calculated for both reactions. Activation parameters with respect to slow step of the mechanisms were computed and discussed for both the cases. The thermodynamic quantities were also determined for both reactions. The catalytic constant (KC) was also calculated for catalysed reaction at different temperatures and the corresponding activation parameters were determined.  相似文献   

2.
The oxidation of dl-ornithine monohydrochloride (OMH) by diperiodatocuprate(III) (DPC) has been investigated both in the absence and presence of ruthenium(III) catalyst in aqueous alkaline medium at a constant ionic strength of 0.20 mol dm−3 spectrophotometrically. The stiochiometry was same in both the cases, i.e., [OMH]/[DPC] = 1:4. In both the catalyzed and uncatalyzed reactions, the order of the reaction with respect to [DPC] was unity while the order with respect to [OMH] was < 1 over the concentration range studied. The rate increased with an increase in [OH] and decreased with an increase in [IO4] in both cases. The order with respect to [Ru(III)] was unity. The reaction rates revealed that Ru(III) catalyzed reaction was about eight-fold faster than the uncatalyzed reaction. The oxidation products were identified by spectral analysis. Suitable mechanisms were proposed. The reaction constants involved in the different steps of the reaction mechanisms were calculated for both cases. The catalytic constant (KC) was also calculated for catalyzed reaction at different temperatures. The activation parameters with respect to slow step of the mechanism and also the thermodynamic quantities were determined. Kinetic experiments suggest that [Cu(H2IO6)(H2O)2] is the reactive copper(III) species and [Ru(H2O)5OH]2+ is the reactive Ru(III) species.  相似文献   

3.
4.
《印度化学会志》2021,98(8):100104
The kinetics approach of oxidation of torsemide (TOR) by hexacyanoferrate (III) [HCF (III)] has been identified spectrophotometrically at 420 ​nm in the alkaline medium in the presence and absence of catalyst ruthenium (III) at 25 ​°C, by keeping ionic strength (1 ​× ​10−2 ​mol ​dm−3) constant. The reaction exhibits at the stoichiometry ratio 1:2 of TOR and HCF (III), for uncatalysed and catalysed reactions. In the absence and presence of the catalyst, the order of the reactions obtained for TOR and HCF (III) was unity. However, the rate of the reactions enhanced by the increase in the concentration of catalyst, as well as the rate increases with an increase in alkaline concentration. The activation parameters for the reaction at the slow step were identified, and the effect of temperature on the rate of the reaction was analysed. A suitable mechanism has been demonstrated by considering the obtained results. The derived rate laws are reliable with analysed experimental kinetics.  相似文献   

5.
6.
The kinetics of Ru(III) catalysed oxidation of l-leucine by diperiodatoargentate(III) (DPA) in alkaline medium at 298 K and a constant ionic strength of 0.60 mol dm−3 was studied spectrophotometrically. The oxidation products are pentanoic acid and Ag(I). The stoichiometry is [l-leucine]:[DPA] = 1:2. The reaction is of first order in Ru(III) and [DPA] and has less than unit order in both [l-leu] and [alkali]. The oxidation reaction in alkaline medium has been shown to proceed via a Ru(III)–l-leucine complex, which further reacts with one molecule of monoperiodatoargentate(III) (MPA) in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test and spectral studies. The reaction constants involved in the different steps of the mechanism are calculated. The catalytic constant (Kc) was also calculated for the Ru(III) catalysed reaction at different temperatures. From the plots of log Kc versus 1/T, values of activation parameters with respect to the catalyst have been evaluated. The activation parameters with respect to the slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined. The active species of catalyst and oxidant have been identified.  相似文献   

7.
The kinetics of ruthenium(III) catalyzed oxidation of atenolol by diperiodatocuprate(III) in aqueous alkaline medium at a constant ionic strength of I = 0.10 M has been studied spectrophotometrically at 27°C. The reaction between diperiodatocuprate(III) and atenolol in alkaline medium in presence of ruthenium(III) exhibits 2: 1 stoichiometry (atenolol: diperiodatocuprate(III)). The main products were identified by spot test, IR, NMR, and LC-MS. The reaction is of first order in DPC concentrations and has less than unit order in both ATN and alkali concentrations. The order in ruthenium(III) was unity. Intervention of free radicals was observed in the reaction. Increase in periodate concentration decreases the rate. The oxidation reaction in alkaline medium has been shown to proceed via a ruthenium(III)-atenolol complex, which reacts with monoperiodatocuprate(III) in a rate determining step followed by other fast steps to give the products. Probable mechanism is proposed and discussed. The activation parameters with respect to the slow step of the mechanism and thermodynamic quantities were determined and discussed.  相似文献   

8.
The diperiodatocuprate(III) (DPC) oxidation of DL-methionine, a sulfur containing amino acid, was studied spectrophotometrically in alkaline solution. The reaction rate was first order in the concentration of DPC and fractional order in the concentration of DL-methionine. Increasing the OH concentration decreased the rate of reaction, whereas adding IO4 enhanced the rate. The reaction was preceded by a small initiation period of about 0.8 minutes. This initiation time decreased when the concentration of IO4 or DPC increased. Adding the reaction products did not alter the rate of reaction. A mechanism including the intervention of a DL-methionine free radical is proposed and the corresponding rate law is derived. The reaction rate constants are evaluated as well as the activation parameters.  相似文献   

9.
The kinetics of oxidation of vanillin (VAN) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.50 mol dm?3 was studied spectrophotometrically. The reaction between DPC and vanillin in alkaline medium exhibits 1:2 stoichiometry (vanillin: DPC). The reaction is of first order in [DPC] and has less than unit order in both [VAN] and [alkali]. Intervention of free radicals was observed in the reaction. Increase in periodate concentration decreases the rate. The oxidation reaction in alkaline medium has been shown to proceed via a monoperiodatocuprate(III)–vanillin complex, which decomposes slowly in a rate‐determining step followed by other fast steps to give the products. The main products were identified by spot test, IR, and MS studies. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined. © 2007 Wiley Periodicals, Inc. 39: 236–244, 2007  相似文献   

10.
This spectroscopic study presents the kinetics and degradation pathways of oxidation of ciprofloxacin by permanganate in alkaline medium at constant ionic strength of 0.04 mol−3. Orders with respect to substrate, oxidant and alkali concentrations were determined. Effect of ionic strength and solvent polarity of the medium on the rate of the reaction was studied. The oxidation products were identified by LC-ESI-MS technique. Product characterization of ciprofloxacin reaction mixtures indicates the formation of three major products corresponding to m/z 263, 306, and 348 (corresponding to full or partial dealkylation of the piperazine ring). The piperazine moiety of ciprofloxacin is the predominant oxidative site to KMnO4. Product analyses showed that oxidation by permanganate results in dealkylation at the piperazine moiety of ciprofloxacin, with the quinolone ring essentially intact. The reaction kinetics and product characterization point to a reaction mechanism that likely begins with formation of a complex between ciprofloxacin and the KMnO4, followed by oxidation at the aromatic N1 atom of piperazine moiety to generate an anilinyl radical intermediate. The radical intermediates subsequently undergo N-dealkylation. Investigations of the reaction at different temperatures allowed the determination of the activation parameters with respect to the slow step of proposed mechanism. The proposed mechanism and the derived rate laws are consistent with the observed kinetics.  相似文献   

11.
Summary The kinetics of oxidation of benzaldoxime by diperiodatocuprate(III) (DPC) was studied spectrocolorimetrically at 414 nm intert.-butanol — water medium. The order in [DPC] and that in [benzaldoxime] was unity. The rate increased with increasing [OH] and decreasing [IO 4 ]. A suitable mechanism is proposed based on the kinetic data.
Kinetik und Mechanismus der oxidativen Deoximierung von Benzaldoxim mit Diperjodatocuprat(III) intert.-Butanol/Wasser
Zusammenfassung Es wurde die Kinetik der Oxidation von Benzaldoxim mit Diperjodatocuprat(III) (DPC) intert.-Butanol/Wasser colorimetrisch bei 414 nm untersucht. Die Reaktionsordnung bezüglich [DPC] und [Benzaldoxim] war gleich 1. Die Reaktionsgeschwindigkeit erhöhte sich mit Zunahme der Konzentration von [OH] und Verminderung von [IO 4 ]. Basierend auf den kinetischen Daten wird ein passender Mechanismus vorgeschlagen.
  相似文献   

12.
The kinetics of ruthenium(III) catalyzed oxidation of formaldehyde and acetaldehyde by alkaline hexacyanoferrate(III) has been studied spectrophotometrically. The rate of oxidation of formaldehyde is directly proportional to [Fe(CN) 3– 6 ] while that of acetaldehyde is proportional tok[Fe(CN) 3– 6 ]/{k +k[Fe(CN) 3– 6 ]}, wherek, k andk are rate constants. The order of reaction in acetylaldehyde is unity while that in formaldehyde falls from 1 to 0. The rate of reaction is proportional to [Ru(III)] T in each case. A suitable mechanism is proposed and discussed.
Die Kinetik der Ru(III)-katalysierten Oxidation von Formaldehyd und Acetaldehyd mittels alkalischem Hexacyanoferrat(III)
Zusammenfassung Die Untersuchung der Kinetik erfolgte spektrophotometrisch. Die Geschwindigkeitskonstante der Oxidation von Formaldehyd ist direkt proportional zu [Fe(CN) 3– 6 ], währenddessen die entsprechende Konstante für Acetaldehyd proportional zuk[Fe(CN) 3– 6 ]/{k +k[Fe(CN) 3– 6 ]} ist, wobeik,k undk Geschwindigkeitskonstanten sind. Die Reaktionsordnung für Acetaldehyd ist eine erste, die für Formaldehyd fällt von erster bis zu nullter Ordnung. Die Geschwindigkeitskonstante ist in jedem Fall proportional zu [Ru(III)] T . Es wird ein passender Mechanismus vorgeschlagen.
  相似文献   

13.
Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0.30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry (atenolol : KMnO4). The reaction shows first-order dependence on [permanganate] and [ruthenium (III)] and apparently less than unit order on both atenolol and alkali concentrations. Reaction rate decreases with increase in ionic strength and increases with decreasing dielectric constant of the medium. Initial addition of reaction products does not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The active species of ruthenium (III) is understood as [Ru(H2O)5OH]2+. The reaction constants involved in the different steps of mechanism are calculated. Activation parameters with respect to the slow step of the mechanism are computed and discussed and thermodynamic quantities are also calculated.  相似文献   

14.
Ruthenium(III) catalyzed oxidation of hexacyanoferrate(II) by periodate in alkaline medium is assumed to occurvia substrate-catalyst complex formation followed by the interaction of oxidant and complex in the rate-limiting stage and yield the products with regeneration of catalyst in the subsequent fast step. The reaction exhibits fractional order in hexacyanoferrate(II) and first-order unity each in oxidant and catalyst. The reaction constants involved in the mechanism are derived.  相似文献   

15.
The kinetics of ruthenium(III) catalyzed oxidation of sulfanilic acid by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of (0.50 mol dm−3) has been studied spectrophoto-metrically. The reaction between sulfanilic acid and DPC in alkaline medium exhibits 1: 4 stoichiometry (sulfanilic acid: DPC). The reaction is first order with respect to [DPC] and [RuIII] and has less than unit order both in [sulfanilic acid] and [alkali]. The active species of catalyst and oxidant have been identified. Intervention of free radicals was observed in the reaction. The main products were identified by spot test and IR. Probable mechanism is proposed and discussed. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to the slow step of the mechanism are computed and discussed. Thermodynamic quantities are also determined.  相似文献   

16.
The effect of La2O3, K2O and Li2O on the properties and catalytic performance of silica-supported nickel catalysts for the hydrogenation of m-dinitrobenzene was investigated. The catalysts promoted with La2O3, Li2O and K2O showed better catalytic performance than the catalyst without promotion, especially the ones co-promoted with La2O3 and K2O or Li2O.  相似文献   

17.
The kinetic of oxidation of dipeptides (DP) namely valyl-glycine (Val-Gly), alanyl-glycine (Ala-Gly) and glycyl-glycine (Gly-Gly), by Mn(III) have been studied in the presence of sulphate ions in acid medium at 26°C. The reaction was followed spectrophotometrically at λmax = 500 nm. A first-order dependence of the rate on both [Mn(III)]o and [DP]o was observed. The rate is independent of the concentration of reduction product, Mn(II) and hydrogen ions. The effects of varying the dielectric constant of the medium and addition of anions such as sulphate, chloride and perchlorate were studied. The activation parameters have been evaluated using Arrhenius and Eyring plots. The oxidation products were isolated and characterized. A mechanism involving the reaction of DP with Mn(III) in the rate-limiting step is suggested. An apparent correlation was noted between the rate of oxidation and the hydrophobicity of these dimers, where increased hyphobicity results in increased rate of oxidation  相似文献   

18.
在碱性介质中,用传统的分光光度法研究了Ag(III)配离子,即[Ag(HIO6)2]5-,氧化药物分子愈创甘油醚的动力学及其机理.用质谱鉴定了氧化产物;反应对Ag(III)和愈创甘油醚均为一级;在温度25.0-40.0℃范围内,通过分析[OH-]和[IO4-]tot对反应速率的影响,二级速率常数有以下表达式:k′=(ka kb[OH-])K1/{f([OH-])[IO4-]tot K1},在25.0℃及离子强度0.30mol·L-1时,对此反应有ka=(2.6±1.2)×10-2mol-1·L·s-1,kb=(2.8±0.1)mol-2·L2·s-1,及K1=(4.1±0.4)×10-4mol·L-1,求出了涉及ka,kb的活化参数,并据此推出反应机理为反应体系中的[Ag(HIO6)2]5-配离子在前期平衡后,反应活性中心与药物分子形成Ag(III)-过碘酸-愈创甘油醚分子三元配合物,配位甘油醚分子通过两个平行途径将两电子传递给中心原子Ag:一个途径无OH-离子参与,另一途径有OH-参与完成.  相似文献   

19.
20.
The kinetics of oxidation of the anti-ulcer drug, ranitidine hydrochloride (RNH) by diperiodatocuprate(III) (DPC) in alkaline medium was studied spectrophotometrically. The reaction exhibits 1:2 stoichiometry (ranitidine:DPC). The reaction is of first order in [DPC] and has less than unit order in [RNH] and negative fractional order in [alkali]. The involvement of free radicals was observed in the reaction. The oxidation has been found to proceed via a DPC-ranitidine complex, which decomposes slowly in a rate-determining step followed by other fast steps to give the products, which were identified as ranitidine sulfoxide by spot test and spectroscopic studies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号