首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we report slice imaging polarization experiments on the state-to-state photodissociation at 42,594 cm(-1) of spatially oriented OCS(v(2) = 1|JlM = 111) → CO(J) + S((1)D(2)). Slice images were measured of the three-dimensional recoil distribution of the S((1)D(2)) photofragment for different polarization geometries of the photolysis and probe laser. The high resolution slice images show well separated velocity rings in the S((1)D(2)) velocity distribution. The velocity rings of the S((1)D(2)) photofragment correlate with individual rotational states of the CO(J) cofragment in the J(CO) = 57-65 region. The angular distribution of the S((1)D(2)) velocity rings are extracted and analyzed using two different polarization models. The first model assumes the nonaxial dynamics evolves after excitation to a single potential energy surface of an oriented OCS(v(2) = 1|JlM = 111) molecule. The second model assumes the excitation is to two potential energy surfaces, and the OCS molecule is randomly oriented. In the high J region (J(CO) = 62-65) it appears that both models fit the polarization very well, in the region J(CO) = 57-61 both models seem to fit the data less well. From the molecular frame alignment moments the m-state distribution of S((1)D(2)) is calculated as a function of the CO(J) channel. A comparison is made with the theoretical m-state distribution calculated from the long-range electrostatic dipole-dipole plus quadrupole interaction model. The S((1)D(2)) photofragment velocity distribution shows a very pronounced strong peak for S((1)D(2)) fragments born in coincidence with CO(J = 61).  相似文献   

2.
Using hexapole quantum state-selection of OCS (v(2)=0,1,2/JlM) and high-resolution slice imaging of quantum state-selected CO(J), the state-to-state cross section OCS (v(2)=0,1,2/JlM)+hnu-->CO(J)+S((1)D(2)) was measured for bending states up to v(2)=2. The population density of the state-selected OCS (v(2)=0,1,2 /JlM) in the molecular beam was obtained by resonantly enhanced multiphoton ionization of OCS and comparison with room temperature bulk gas. A strong increase of the cross section with increasing bending state is observed for CO(J) in the high J region, J=60-67. Integrating over all J states the authors find sigma(v(2)=0):sigma(v(2)=1):sigma(v(2)=2)=1.0:7.0:15.0. A quantitative comparison is made with the dependence of the transition dipole moment function on the bending angle.  相似文献   

3.
Photodissociation studies using ion imaging are reported, measuring the coherence of the polarization of the S((1)D(2)) fragment from the photolysis of single-quantum state-selected carbonyl sulfide (OCS) at 223 and 230 nm. A hexapole state-selector focuses a molecular beam of OCS parent molecules in the ground state (nu2=0mid R:JM=10) or in the first excited bending state (nu2=1mid R:JlM=111). At 230 nm photolysis the Im[a1 (1)(parallel, perpendicular)] moment for the fast S(1D2) channel increases by about 50% when the initial OCS parent state changes from the vibrationless ground state to the first excited bending state. No dependence on the initial bending state is found for photolysis at 223 nm. We observe separate rings in the slow channel of the velocity distribution of S(1D2) correlating to single CO(J) rotational states. The additional available energy for photolysis at 223 nm is found to be channeled mostly into the CO(J) rotational motion. An improved value for the OC-S bond energy D0=4.292 eV is reported.  相似文献   

4.
H(35)Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H(35)Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 microm. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the (35)Cl((2)P(32)) photofragments was measured using 2+1 REMPI and time-of-flight mass spectrometry. The (35)Cl((2)P(32)) atoms are aligned by two mechanisms: (1) the time-dependent transfer of rotational polarization of the H(35)Cl(v=2,J=1,M=0) molecule to the (35)Cl((2)P(32)) nuclear spin [which is conserved during the photodissociation and thus contributes to the total (35)Cl((2)P(32)) photofragment atomic polarization] and (2) the alignment of the (35)Cl((2)P(32)) electronic polarization resulting from the photoexcitation and dissociation process. The total alignment of the (35)Cl((2)P(32)) photofragments from these two mechanisms was found to vary as a function of time delay between the excitation and the photolysis laser pulses, in agreement with theoretical predictions. We show that the alignment of the ground-state (35)Cl((2)P(32)) atoms, with respect to the photodissociation recoil direction, can be controlled optically. Potential applications include the study of alignment-dependent collision effects.  相似文献   

5.
The time-slice velocity-map ion imaging and the resonant four-wave mixing techniques are combined to study the photodissociation of NO in the vacuum ultraviolet (VUV) region around 13.5 eV above the ionization potential. The neutral atoms, i.e., N((2)D(o)), O((3)P(2)), O((3)P(1)), O((3)P(0)), and O((1)D(2)), are probed by exciting an autoionization line of O((1)D(2)) or N((2)D(o)), or an intermediate Rydberg state of O((3)P(0,1,2)). Old and new autoionization lines of O((1)D(2)) and N((2)D(o)) in this region have been measured and newer frequencies are given for them. The photodissociation channels producing N((2)D(o)) + O((3)P), N((2)D(o)) + O((1)D(2)), N((2)D(o)) + O((1)S(0)), and N((2)P(o)) + O((3)P) have all been identified. This is the first time that a single VUV photon has been used to study the photodissociation of NO in this energy region. Our measurements of the angular distributions show that the recoil anisotropy parameters (β) for all the dissociation channels except for the N((2)D(o)) + O((1)S(0)) channel are minus at each of the wavelengths used in the present study. Thus direct excitation of NO by a single VUV photon in this energy region leads to excitation of states with Σ or Δ symmetry (ΔΩ = ±1), explaining the observed perpendicular transition.  相似文献   

6.
We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 degrees to the orientation direction of the OCS molecules. The CO(nu=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO(nu=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting beta parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.  相似文献   

7.
DCl(+)(X (2)Pi(32),v(+")=0) cations have been prepared by 2+1 resonance enhanced multiphoton ionization, and their subsequent fragmentation following excitation at numerous wavelengths in the range of 240-350 nm studied by velocity map imaging of the resulting Cl(+) products. This range of excitation wavelengths allows selective population of A (2)Sigma(+) state levels with all vibrational (v(+')) quantum numbers in the range 0< or =v(+')< or =15. Image analysis yields wavelength dependent branching ratios and recoil anisotropies of the various D+Cl(+) ((3)P(J), (1)D, and (1)S) product channels. Levels with 10< or =v(+')< or =15 have sufficient energy to predissociate, forming D+Cl(+)((3)P(J)) products with perpendicular recoil anisotropies-consistent with the A (2)Sigma(+)<--X (2)Pi parent excitation and subsequent fragmentation on a time scale that is fast compared with the parent rotational period. Branching into the various spin-orbit states of the Cl(+)((3)P(J)) product is found to depend sensitively upon v(+') and, in the case of the v(+')=13 level, to vary with the precise choice of excitation wavelength within the A (2)Sigma(+)<--X (2)Pi(13,0) band. Such variations have been rationalized qualitatively in terms of the differing contributions made to the overall predissociation rate of DCl(+)(A,v(+')) molecules by coupling to repulsive states of (4)Pi, (4)Sigma(-), and (2)Sigma(-) symmetries, all of which are calculated to cross the outer limb of the A (2)Sigma(+) state potential at energies close to that of the v(+')=10 level. Cl(+)((3)P(J)) fragments are detected weakly following excitation to A (2)Sigma(+) state levels with v(+')=0 or 1, Cl(+)((1)D) fragments dominate the ion yield when exciting via 2< or =v(+')< or =6 and via v(+')=9, while Cl(+)((1)S) fragments dominate the Cl(+) images obtained when exciting via levels with v(+')=7 and 8. Analysis of wavelength resolved action spectra for forming these Cl(+) ions and of the resulting Cl(+) ion images shows that (i) these ions all arise via two photon absorption processes, resonance enhanced at the one photon energy by the various A(v(+')<10) levels, (ii) the first A (2)Sigma(+)<--X (2)Pi absorption step is saturated under the conditions required to observe significant two photon dissociation, and (iii) the final absorption step from the resonance enhancing A(v(+')) level involves a parallel transition.  相似文献   

8.
The photodissociation of rotationally state-selected methyl bromide is studied in the wavelength region between 213 and 235 nm using slice imaging. A hexapole state selector is used to focus a single (JK=11) rotational quantum state of the parent molecule, and a high speed slice imaging detector measures directly the three-dimensional recoil distribution of the methyl fragment. Experiments were performed on both normal (CH(3)Br) and deuterated (CD(3)Br) parent molecules. The velocity distribution of the methyl fragment shows a rich structure, especially for the CD(3) photofragment, assigned to the formation of vibrationally excited methyl fragments in the nu(1) and nu(4) vibrational modes. The CH(3) fragment formed with ground state Br((2)P(3/2)) is observed to be rotationally more excited, by some 230-340 cm(-1), compared to the methyl fragment formed with spin-orbit excited Br((2)P(1/2)). Branching ratios and angular distributions are obtained for various methyl product states and they are observed to vary with photodissociation energy. The nonadiabatic transition probability for the (3)Q(0+)-->(1)Q(1) transition is calculated from the images and differences between the isotopes are observed. Comparison with previous non-state-selected experiments indicates an enhanced nonadiabatic transition probability for state-selected K=1 methyl bromide parent molecules. From the state-to-state photodissociation experiments the dissociationenergy for both isotopes was determined, D(0)(CH(3)Br)=23 400+/-133 cm(-1) and D(0)(CD(3)Br)=23 827+/-94 cm(-1).  相似文献   

9.
The photodissociation of CS(2) has been investigated using velocity-map ion imaging of the S((1)D(2)) atomic photofragments following excitation at 193 nm and at longer wavelengths close to the S((1)D(2)) channel threshold. The experiments probe regions both above and below the energetic barrier to linearity on the (1)Σ(u) (+)((1)B(2)) potential energy surface. The imaging data in both regions indicate that the electronic angular momentum of the S((1)D(2)) atom products is unpolarized, but also reveal different dissociation dynamics in the two regions. Excitation above the barrier to linearity yields an inverted CS((1)Σ(+)) vibrational population distribution, whereas the long-wavelength state-to-state results following excitation below the barrier reveal CS((1)Σ(+))(v, J) coproduct state distributions which are consistent with a statistical partitioning of the energy. Below the barrier, photofragment excitation spectra point to an enhancement of the singlet channel for K = 1, relative to K = 0, where K is the projection of the angular momentum along the principal axis, in agreement with previous work. However, the CS cofragment product state distributions are found to be insensitive to K. It is proposed that dissociation below the barrier to linearity occurs primarily on a surface with a significant potential energy well and without an exit channel barrier, such as that for the ground electronic state. However, oscillatory structure is also observed in the kinetic energy release distributions, which is shown to be consistent with a mapping of parent molecule bending motion. This could indicate the operation of competing direct and indirect dissociation mechanisms below the barrier to linearity.  相似文献   

10.
Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data.  相似文献   

11.
The vacuum ultraviolet photodissociation of OCS via the $F$ $3^1\Pi$ Rydberg states was investigated in the range of 134$-$140 nm by means of the time-sliced velocity map ion imaging technique. The images of S($^1$D$_2$) products from the CO($X^1\Sigma^+$)+S($^1$D$_2$) dissociation channel were acquired at five photolysis wavelengths, corresponding to a series of symmetric stretching vibrational excitations in OCS($F$ $3^1\Pi$, $v_1$=0$-$4). The total translational energy distributions, vibrational populations and angular distributions of CO($X^1\Sigma^+$, $v$) coproducts were derived. The analysis of experimental results suggests that the excited OCS molecules dissociate to CO($X^1\Sigma^+$) and S($^1$D$_2$) products via non-adiabatic couplings between the upper $F$ $3^1\Pi$ states and the lower-lying states both in the C$_{\infty \textrm{v}}$ and C$_{\rm{s}}$ symmetry. Furthermore, strong wavelength dependent behavior has been observed: the greatly distinct vibrational populations and angular distributions of CO($X^1\Sigma^+$, $v$) products from the lower ($v_1$=0$-$2) and higher ($v_1$=3, 4) vibrational states of the excited OCS($F$ $3^1\Pi$, $v_1$) demonstrate that very different mechanisms are involved in the dissociation processes. This study provides evidence for the possible contribution of vibronic coupling and the crucial role of vibronic coupling on the vacuum ultraviolet photodissociation dynamics.  相似文献   

12.
The technique of resonance enhanced multiphoton ionization (REMPI) has been used in conjunction with time-of-flight mass spectrometry (TOFMS), to investigate the dynamics of ozone photolysis in the long wavelength region of the Hartley band (301-311 nm). Specifically, both the translational anisotropy and the rotational angular momentum orientation of the O(2) (a (1)Delta(g); nu=0, J=16-20) fragments have been measured as a function of photolysis wavelength. Within this region, the thermodynamic thresholds for the formation of these products in combination with O ((1)D(2)) are approached and passed, and consequently these studies have allowed an investigation into the effects on the dynamics of slowing fragment recoil velocities and the increasing importance of vibrationally mediated photolysis. The determined beta parameters for all the J states probed follow a similar trend, decreasing from a value typical for the initial (1)B(2)<--(1)A(1) excitation responsible for the Hartley band [for example, beta=1.40+/-0.12 for the O(2) (a (1)Delta(g); J=18) fragment], to a much lower value beyond the thermodynamic threshold for the fragment's production (for example, beta=0.63+/-0.19 for the J=18 fragment following photolysis at 311 nm). This trend, similar to that observed when probing the atomic fragment in a previous set of experiments, [Horrocks et al., J. Chem. Phys. 125, 133313 (2006); Denzer et al., Phys. Chem. Chem. Phys. 16, 1954 (2006)] is consistent with the photodissociation of vibrationally excited ozone molecules beyond the threshold wavelengths and we estimate approximately 1/3 of this to be from excitation in the nu(3) asymmetric stretching mode. These observations are substantiated by the values of the beta(0) (2)(2,1) orientation moment measured, which for photolysis at 301 nm are negative, indicating that a bond opening mechanism provides the key torque for the departing O(2) fragment. The orientation moment becomes positive again for photolysis beyond threshold, however, as the increasing impulsive dissociation again begins to dominate the nature of the rotation of the departing molecular fragment. In addition, a (2+2) REMPI scheme has been utilized to probe the O(2) (a (1)Delta(g)) "low" J fragments, where the majority of the population resides following photolysis within this region. The REMPI-TOFMS technique has been used to confirm the rotational character of a spectral feature through examination of the signal line shapes obtained using different experimental geometries. The dynamical information subsequently obtained, probing the "low" J O(2) (a (1)Delta(g)) fragments on these rotational transitions, has unified previous translational anisotropy results obtained by detecting the O ((1)D(2)) atomic fragment with data for the O(2) (a (1)Delta(g); J=16-20) fragments.  相似文献   

13.
Supercollision relaxation of highly vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) with D35Cl is investigated using high-resolution transient IR diode laser absorption spectroscopy at 4.4 microm. Highly excited pyrazine is prepared by pulsed UV excitation at 266 nm, followed by rapid radiationless decay to the ground electronic state. The rotational energy distribution of the scattered DCl (v = 0,J) molecules with J = 15-21 is characterized by T(rot) = 755+/-90 K. The relative translational energy increases as a function of rotational quantum number for DCl with T(rel) = 710+/-190 K for J = 15 and T(rel) = 1270+/-240 K for J = 21. The average change in recoil velocity correlates with the change in rotational angular momentum quantum number and highlights the role of angular momentum in energy gain partitioning. The integrated energy-transfer rate for appearance of DCl (v = 0,J = 15-21) is k(2)(int) = 7.1x10(-11) cm3 molecule(-1) s(-1), approximately one-eighth the Lennard-Jones collision rate. The results are compared to earlier energy gain measurements of CO2 and H2O.  相似文献   

14.
The predissociation of N(2) from the rotational levels in the o(1)∏(u) (v(') = 2) and b(') (1)Σ(u) (v(') = 8) bands has been studied in the wavenumber (or energy) range from 109?350 cm(-1) (13.5577 eV) to 109?580 cm(-1) (13.5862 eV) by time-sliced velocity-mapped imaging technique with VUV photoionization detection of the fragments. These levels were excited from the ground state of N(2) (X(1)Σ(g) (+), v(") = 0) levels using an unfocused vacuum ultraviolet (VUV) laser via a one-photon process. The same VUV laser is used to ionize the metastable N ((2)D(o)) produced from the predissociation process and the time-sliced velocity-mapped imaging technique is used to determine their velocity and angular distributions. Two different theoretical methods developed, respectively, by Kim et al. [J. Chem. Phys. 125, 133316 (2006) and Zande [J. Chem. Phys. 107, 9447 (1997)] were used to calculate the anisotropic parameters for the predissociation to the channel N((4)S(o)) + N((2)D(o)) to compare with the observed value for each of the rotational levels. Very good agreement with the experimental results was obtained for both methods. Possible predissociation mechanisms were predicted from the measurements and calculations.  相似文献   

15.
The dissociation of OCS has been investigated subsequent to excitation at 248 nm using velocity map ion imaging. Speed distributions, speed dependent translational anisotropy parameters, and the atomic angular momentum orientation and alignment are reported for the channel leading to S((3)P(J)). The speed distributions and beta parameters are in broad agreement with previous work and show behavior that is highly sensitive to the S-atom spin-orbit state. The data are shown to be consistent with the operation of at least two triplet production mechanisms. Interpretation of the angular momentum polarization data in terms of an adiabatic picture has been used to help identify a likely dissociation pathway for the majority of the S((3)P(J)) products, which strongly favors production of J=2 fragment atoms, correlated, it is proposed, with rotationally hot and vibrationally cold CO cofragments. For these fragments, optical excitation to the 2 (1)A(') surface is thought to constitute the first step, as for the singlet dissociation channel. This is followed by crossing, via a conical intersection, to the ground 1 (1)A(') state, from where intersystem crossing occurs, populating the 1 (3)A(')1 (3)A(")((3)Pi) states. The proposed mechanism provides a qualitative rationale for the observed spin-orbit populations, as well as the S((3)P(J)) quantum yield and angular momentum polarization. At least one other production mechanism, leading to a more statistical S-atom spin-orbit state distribution and rotationally cold, vibrationally hot CO cofragments, is thought to involve direct excitation to either the (3)Sigma(-) or (3)Pi states.  相似文献   

16.
Relative state-to-state cross sections of OH molecules in the (2)Pi(32), v=0, J=32, M(J)=32, f state have been determined for transitions up to (2)Pi(32), v=0, J=112, f and (2)Pi(12), v=0, J=72, e states by collisions with HBr molecules ((1)Sigma, v=0, J<4) at 750 cm(-1) collision energy. In order to investigate features of the anisotropy of the OH-HBr potential energy surface, the steric asymmetries, which account for the effect of the OH orientation with respect to the collision partner, have been measured. A comparison with other systems previously studied shows strong similarities with the OH-HCl system.  相似文献   

17.
The triplet potential energy surface of the O((3)P) + CS(2) reaction is investigated by using various quantum chemical methods including CCSD(T), QCISD(T), CCSD, QCISD, G3B3, MPWB1K, BB1K, MP2, and B3LYP. The thermal rate coefficients for the formation of three major products, CS + SO ((3)Σ(-)), OCS + S ((3)P) and CO + S(2) ((3)Σ(-)(g)) were computed by using transition state and RRKM statistical rate theories over the temperature range of 200-2000 K. The computed k(SO + CS) by using high-level quantum chemical methods is in accordance with the available experimental data. The calculated rate coefficients for the formation of OCS + S ((3)P) and CO + S(2) ((3)Σ(-)(g)) are much lower than k(SO + CS); hence, it is predicted that these two product channels do not contribute significantly to the overall rate coefficient.  相似文献   

18.
Relative state-to-state cross sections and steric asymmetries have been measured for the scattering process: OH (X (2)Pi(32),v=0,J=32,M(J)=32,f)+HI ((1)Sigma,v=0,J<4)-->OH (X (2)Pi,v=0,Omega=12,J=12-52 and Omega=32,J=32-92,ef)+HI, at 690 cm(-1) collision energy. Comparison with the previously studied systems OH-HCl and OH-HBr reveals relevant features of the potential energy surfaces of these molecular systems. Some measured differences concerning the internal energy distribution after collision and the propensities for the impact with one or the other side of the OH molecule in scattering by HCl, HBr, and HI molecules are discussed.  相似文献   

19.
在230nm激光激发下,氧硫化碳(OCS)分子迅速解离生成振动基态但高转动激发的CO(X~1∑_g~+,v=0,J=42-69)碎片,并通过共振增强多光子电离技术实现其离子化。通过检测处于J=56-69转动激发态CO碎片的离子速度聚焦影像,我们获得了各转动态CO碎片的速度分布和空间角度分布,其中包含了S(1D)+CO的单重态和S(~3P_J)+CO三重态解离通道的贡献。不同的转动态CO碎片对应三重态产物通道的量子产率略有不同,经加权平均我们得到230 nm附近光解OCS分子中S(3P)解离通道的量子产率为4.16%。结合高精度量化计算的OCS分子势能面和吸收截面的信息,我们获得了OCS光解的三重态解离机理,即基态OCS(X~1A')分子吸收一个光子激发到弯曲的A~1A'态之后,通过内转换跃迁回弯曲构型的基电子态,随后在C-S键断裂过程中与2~3A"(c~3A")态强烈耦合并沿后者势能面绝热解离。  相似文献   

20.
用时间切片速度成像方法研究了氦液滴中羰基硫(COS)分子的光解动力学. 从共振增强(2+1)电离的CO光谱中发现在氦液滴环境中解离产物CO的转动冷却比振动冷却更有效.利用速度成像采集到的CO (v=0)和CO (v=1)的影像在角分布上都呈现出各向同性的特点. 产物平动能分布的结果表明尽管大部分的平动能都被超流体环境所弛豫, 但振动激发态产物CO (v=1) 的平均平动能比振动基态产物CO (v=0) 的平均平动能高.对羰基硫分子在氦液滴中的光解动力学机理进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号