首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
导电高分子/贵金属复合纳米材料因其在催化、传感、表面增强拉曼、光热治疗等诸多领域的应用前景而受到广泛关注.本文主要介绍我们课题组近年来利用可控合成策略制备的负载型和包埋型两种结构聚苯胺/贵金属复合纳米材料,以及利用复合纳米材料的结构和功能特性,对其在多相催化领域的应用、结构与催化性能之间构效关系的探索.  相似文献   

2.
Controllably synthesizing well-dispersed covalent organic frameworks(COFs) with uniform both morphology and size is still a challenge. Herein, we report the template-directed synthesis of COFTTA-DHTA-based core-shell hybrids under solvothermal conditions by using amino-functionalized SiO_2 microspheres as templates coupled with stepwise addition of initial monomer molecules. The modified amino groups on the surfaces of SiO_2 templates play an important role in the formation of well-defined NH_2-f-SiO_2@COFTTA-DHTA core-shell hybrids. COFTTA-DHTA hollow spheres can be obtained by etching SiO_2 cores of NH_2-f-SiO_2@COFTTA-DHTA. Both the NH_2-f-SiO_2@COFTTA-DHTA and COFTTA-DHTA hollow spheres possess the well-defined morphology, high crystallinity and porosity, excellent dispersion property and high chemical stability. The template synthesis method demonstrated in this work provides a general method for the shape-controlled synthesis of COF-based materials, which is important for the further applications in the fields such as energy storage, drug delivery and catalysis.  相似文献   

3.
Adhesion to epithelial surface is often the first step in bacterial and viral infection. In this process, the microbes use a variety of proteins for interaction with host carbohydrates presented as glycoconjugates on cell surfaces. Crystal structures of adhesin and lectin binding sites in complexes with oligosaccharide open the route for design and synthesis of glycomimetics, glycodendrimers, and glycopolymers that are able to block infection at an early stage.  相似文献   

4.
Carbohydrates on cell surfaces are information molecules. Although only seven or eight monosaccharides are commonly used as building blocks in mammalian systems, the multifunctionality of these monomers can lead to the assembly of an immense variety of complex structures. Millions of different tetrasaccharide structures, for example, can be constructed from this small number of building blocks, if branching, the stereochemistry of glycosidic linkages, and the modification of hydroxyl and amino groups are taken into consideration. Oligosaccharides therefore represent an effective class of biomolecules that code for a vast amount of information required in various biological recognition processes, such as intercellular communication, signal transduction, cell adhesion, infection, cell differentiation, development and metastasis. The pace of development of pharmaceuticals based on carbohydrates has, however, been slower than that based on other classes of biomolecules. Part of the reason is the lack of technologies for the study of complex carbohydrates. There is no method to amplify oligosaccharides for sequence analysis. There is no machine available for automated synthesis of oligosaccharides. In addition, the possibly poor bioavailability and difficulties in the large-scale synthesis of carbohydrates have undoubtedly contributed to this slow pace. The enzymatic and chemoenzymatic methods, especially those based on aldolases and glycosyltransferases, described here appear to be useful for the synthesis of mono- and oligosaccaharides and related molecules. Further advances in glycobiology will probably lead to the development of new technologies for the study of carbohydrate recognition and for the synthesis of bioactive carbohydrates and mimetics to control the recognition processes.  相似文献   

5.
We focus our studies on DNA-chromophore motif on surfaces using samples prepared by the synthetic methods described by Wang and Li in a recent publication (J. Am. Chem. Soc. 2003, 125, 5248-5249). Scanning tunneling microscope (STM) was used to investigate the DNA-chromophore hybrids adsorbed on Au(111) and highly oriented pyrolytic graphite (HOPG) surfaces at room temperature in air. Experiments found that the DNA-chromophore hybrid molecules easily formed multimolecule aggregations on gold surface. On HOPG surfaces, however, DNA-chromophore hybrids were usually adsorbed as single molecules. STM images further showed DNA-chromophore hybrids adsorbed on Au(111) surfaces existed in the form of single molecule, dimer, trimer, tetramer, etc. The occurrence of molecular aggregations indicates that molecular interactions are comparable or stronger than molecule-substrate interactions; such weak interactions control the geometrical sizes and topographical shapes of the self-assembled DNA-chromophore hybrids on surfaces.  相似文献   

6.
Post‐functionalization of organically modified polyoxometalates (POMs) is a powerful synthetic tool to devise functional building blocks for the rational elaboration of POM‐based molecular materials. In this personal account we focus on iodoaryl‐terminated POM platforms, describe reliable routes to the synthesis of covalent organic‐inorganic POM‐based hybrids and their integration into advanced molecular architectures or multi‐scale assemblies as well as their immobilization onto surfaces. Valorisation of the remarkable redox properties of POMs in the fields of artificial synthesis and molecular electronic is especially considered.  相似文献   

7.
The unique functions of carbohydrates, including energy storage, transport, modulation of protein function, intercellular adhesion, signal transduction, malignant transformation, and viral and bacterial cell-surface recognition, underlie a significant pharmaceutical potential. The development of combinatorial carbohydrate libraries in this important arena has been slow, in contrast to the rapid development of combinatorial synthesis in the area of small-molecule libraries and biopolymers. This is largely as a result of the inherent difficulties presented by this class of polyfunctional compounds. Nevertheless, strategies to cope with these problems have been devised over the past seven years, and combinatorial carbohydrate libraries have appeared. The incorporation of an amino acid moiety into the carbohydrate scaffold generates glycosamino acids, which are attractive building blocks for the preparation of carbohydrate-based libraries because of the well-established automated peptide synthesis. Derivatization as well as homo- and heterooligomerization of glycosamino acids can be used to create novel structures with unique properties. Glycosamino acids are hybrid structures of carbohydrates and amino acids which can be utilized to generate potential glycomimetics and peptidomimetics. The incorporation of glycosamino acids into peptides allows the engineering of carbohydrate-binding sites into synthetic polypeptides, which may also influence the pharmacokinetic and dynamic properties of the peptides. Furthermore, sugar-amino acid hybrids offer a tremendous structural and functional diversity, which is largely unexplored and requires combinatorial strategies for efficient exploitation. This article provides an overview of previous work on glycosamino acids and discusses their use in combinatorial synthesis and drug discovery. Supporting information for this article is available on the WWW under http://www.angewandte.com or from the author.  相似文献   

8.
The key role of carbohydrates in biological processes and their visible existence in our everyday life have stimulated the interest of leading research groups on the smart and simple synthesis of common and rare sugar molecules. Now, more than 120 years after Fischer's first synthesis of (D)-glucose (1890), we are witnessing important development in this field of total synthesis. Using modern methods of direct activation of carbonyl compounds chemists can prepare sugars in an elegant and efficient way similar to that of Nature. This tutorial review presents recent impressive progress in the area of de novo synthesis of carbohydrates by using organocatalytic direct aldol reaction as a key step.  相似文献   

9.
In the area of peptide and nucleic acid chemistry and biology, high-throughput synthesis has played an important role in providing useful small-molecule-based chemical probes in understanding the structure and function relationships. The past several years, there has been a constant rise in interest toward understanding the biological roles and functions of another important class of biomolecules, i.e., carbohydrates and carbohydrate conjugates. Although at early stages, in recent years, several groups have developed high-throughput synthetic methods to obtain complex carbohydrates or carbohydrate-like small-molecules. The present review article summarizes some of these developments.  相似文献   

10.
The significant progress made in understanding the role of carbohydrates and carbohydrates based therapeutics at molecular level has highlighted the importance of carbohydrate bioconjugates in the field of biology, chemistry and therapeutics. The glycosylation of biomolecules is a nature-inspired approach, to impart structural and functional properties to the biomolecules. The availability of facile techniques to synthesize well-defined glycopolymers of varying molecular weights, compositions and shape and their facile conjugation with biomolecules of interest have helped researchers in understanding many aspects of their biological functions at the molecular level. This review focuses on the development of glycopolymer-bioconjugates and provides a comprehensive overview of the present bioconjugation tools for their synthesis. The glycosylation of biomolecules is achieved by either pre or post-polymerization modification approaches. The review highlights the potential of living radical polymerization for the facile synthesis of glycopolymer bioconjugates using both pre and post-polymerization bioconjugation approaches, and without disrupting the native structure and functions of the biological molecules. Non-covalent carbohydrate–carbohydrate and carbohydrate–protein interactions play a significant role in many biological and pathological events. The non-covalent interactions of synthetic glycopolymers with biomolecules are also discussed in this review.  相似文献   

11.
Silicon nanocrystals (Si‐NCs) are emerging as an attractive class of quantum dots owing to the natural abundance of silicon in the Earth's crust, their low toxicity compared to many Group II–VI and III–V based quantum dots, compatibility with the existing semiconductor industry infrastructure, and their unique optoelectronic properties. Despite these favorable qualities, Si‐NCs have not received the same attention as Group II–VI and III–V quantum dots, because of their lower emission quantum yields, difficulties associated with synthesizing monodisperse particles, and oxidative instability. Recent advancements indicate the surface chemistry of Si‐NCs plays a key role in determining many of their properties. This Review summarizes new reports related to engineering Si‐NC surfaces, synthesis of Si‐NC/polymer hybrids, and their applications in sensing, diodes, catalysis, and batteries.  相似文献   

12.
《化学:亚洲杂志》2017,12(10):1027-1042
The importance of carbohydrates is evident by their essential role in all living systems. Their syntheses have attracted attention from chemists for over a century. Most chemical syntheses in this area focus on the preparation of carbohydrates from naturally occurring monosaccharides. De novo chemical synthesis of carbohydrates from feedstock starting materials has emerged as a complementary method for the preparation of diverse mono‐ and oligosaccharides. In this review, the history of de novo carbohydrate synthesis is briefly discussed and particular attention is given to methods that address the formation of glycosidic bonds for potential de novo synthesis of oligosaccharides. Almost all methods of this kind involve the formation of dihydropyran intermediates. Recent progress in forming dihydropyrans by Achmatowicz rearrangement, hetero‐Diels–Alder cycloaddition, ring‐closing metathesis, and other methods is also elaborated.  相似文献   

13.
This mini-review describes recent work in the field of glycopolymer synthesis, with a focus on methods that have employed “click chemistry” and controlled polymerization methodology. A variety of carbohydrates with clickable groups such as azide, alkyne, and thiol moieties provide new routes to glycopolymers. Several studies use copper catalyzed azide-alkyne cycloaddition (CuAAC) reactions to synthesize glycomonomers or to incorporate carbohydrates into a clickable polymeric backbone. Alternatively, there are many thiol based click reactions which provide metal-free synthesis, which are discussed in details.  相似文献   

14.
Controllably synthesizing well-dispersed covalent organic frameworks (COFs) with uniform both morphology and size is still a challenge. Herein, we report the template-directed synthesis of COFTTA-DHTA-based core-shell hybrids under solvothermal conditions by using amino-functionalized SiO2 microspheres as templates coupled with stepwise addition of initial monomer molecules. The modified amino groups on the surfaces of SiO2 templates play an important role in the formation of well-defined NH2-f-SiO2@COFTTA-DHTA core-shell hybrids. COFTTA-DHTA hollow spheres can be obtained by etching SiO2 cores of NH2-f-SiO2@COFTTA-DHTA. Both the NH2-f-SiO2@COFTTA-DHTA and COFTTA-DHTA hollow spheres possess the well-defined morphology, high crystallinity and porosity, excellent dispersion property and high chemical stability. The template synthesis method demonstrated in this work provides a general method for the shape-controlled synthesis of COF-based materials, which is important for the further applications in the fields such as energy storage, drug delivery and catalysis.  相似文献   

15.
The multitude of roles that carbohydrates and their glyco-conjugates play in biological processes has stimulated great interest in determining the nature of their interactions in both normal and diseased states. Manipulating such interactions will provide leads for drug discovery. Of the major classes of biomolecule, carbohydrates are the most structurally diverse. This hetereogeneity makes isolation of pure samples, and in sufficient amounts, from biological sources extremely difficult. Chemical synthesis offers the advantage of producing pure and structurally defined oligosaccharides for biological investigations. Although the complex nature of carbohydrates means that this is challenging, recent advances in the field have facilitated access to these molecules. The synthesis and isolation of oligosaccharides combined with progress in glycoarray technology have aided the identification of new carbohydrate-binding drug targets. This review aims to provide an overview of the latest advancements in carbohydrate chemistry and the role of these complex molecules in drug discovery, focusing particularly on synthetic methodologies, glycosaminoglycans, glycoprotein synthesis and vaccine development over the last few years.  相似文献   

16.
Carbohydrates are an omnipresent class of highly oxygenated natural products. Due to their wide spectra of biological activities, they have been in the center of synthetic organic chemistry for more than 130 years. During the past 50 years non-natural carbohydrates attracted the interest of various chemists in the fields of organic, biological, and medical chemistry. Especially desoxygenated sugars proved to be an important class of compounds. Up to date, most non-natural analogues are synthesized starting from natural, enantiomerically pure carbohydrates in multistep synthesis. In this report, we present a synthetic strategy that allows the selective modular synthesis of natural and non-natural carbohydrates within five synthetic steps starting from readily available starting materials. Due to a sequential introduction of O- or N-functionalities, a regioselective protection of each new functional group is possible. The key step in the carbohydrate synthesis is a RuO4-catalyzed oxidative cyclization via a pH-dependent dehydrogenation-dihydroxylation-cyclization or an oxidative fragmentation-cyclization, leading to highly substituted new carbohydrates, in which each functional group is orthogonally protected and accessible for further synthetic operations.  相似文献   

17.
Polyhydroxylated molecules, including natural carbohydrates, are known to undergo photooxidation on wide-gap transition metal oxides irradiated by ultraviolet light. In this study, we examine mechanistic aspects of this photoreaction on aqueous TiO(2), α-FeOOH, and α-Fe(2)O(3) particles using electron paramagnetic resonance (EPR) spectroscopy and site-selective deuteration. We demonstrate that the carbohydrates are oxidized at sites involved in the formation of oxo-bridges between the chemisorbed carbohydrate molecule and metal ions at the oxide surface. This bridging inhibits the loss of water (which is the typical reaction of the analogous free radicals in bulk solvent) promoting instead a rearrangement that leads to elimination of the formyl radical. For natural carbohydrates, the latter reaction mainly involves carbon-1, whereas the main radical products of the oxidation are radical arising from H atom loss centered on carbon-1, -2, and -3 sites. Photoexcited TiO(2) oxidizes all of the carbohydrates and polyols, whereas α-FeOOH oxidizes some of the carbohydrates, and α-Fe(2)O(3) is unreactive. These results serve as a stepping stone for understanding the photochemistry on mineral surfaces of more complex biomolecules such as nucleic acids.  相似文献   

18.
The biological significance of glycans in the post-genomic era requires the development of new technologies to enable functional studies of carbohydrates in a high-throughput manner. Recently, carbohydrate microarrays have been exploited as an advanced technology for this purpose. Efficient immobilization methods for carbohydrate probes on the proper surface are essential for the successful fabrication of carbohydrate microarrays. Up to date, several techniques have been developed to attach simple or complex carbohydrates to a solid surface. The developed glycan microarrays have been applied for functional glycomics, drug discovery, and diagnosis. In this concept article, we discuss the progress of immobilization methods of carbohydrates on solid surfaces, their potential uses for biological research and biomedical applications, and possible solutions for some remaining challenges to improve this new technology.  相似文献   

19.
Contacts between aromatic surfaces and saccharide CH groups are common motifs in natural carbohydrate recognition. These CH-π interactions are modeled in "synthetic lectins" which employ oligophenyl units as apolar surfaces. Here we report the synthesis and study of new synthetic lectins with fluoro- and hydroxy-substituted biphenyl units, designed to explore the role of π-electron density in carbohydrate CH-π interactions. We find evidence that recognition can be moderated through electronic effects but that other factors such as cavity hydration are also important and sometimes predominant in determining binding strengths.  相似文献   

20.
Carbohydrate modification is a common phenomenon in nature. Many carbohydrate modifications such as some epimerization, O-acetylation, O-sulfation, O-methylation, N-deacetylation, and N-sulfation, take place after the formation of oligosaccharide or polysaccharide backbones. These modifications can be categorized as carbohydrate post-glycosylational modifications (PGMs). Carbohydrate PGMs further extend the complexity of the structures and the synthesis of carbohydrates and glycoconjugates. They also increase the capacity of the biological regulation that is achieved by finely tuning the structures of carbohydrates. Developing efficient methods to obtain structurally defined naturally occurring oligosaccharides, polysaccharides, and glycoconjugates with carbohydrate PGMs is essential for understanding the biological significance of carbohydrate PGMs. Combined with high-throughput screening methods, synthetic carbohydrates with PGMs are invaluable probes in structure-activity relationship studies. We illustrate here several classes of carbohydrates with PGMs and their applications. Recent progress in chemical, enzymatic, and chemoenzymatic syntheses of these carbohydrates and their derivatives are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号