首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different conformational isomers of propanal, cis and gauche, are investigated by the vacuum-UV mass-analyzed threshold ionization (VUV-MATI) spectroscopy to give accurate adiabatic ionization potentials of 9.9997 +/- 0.0006 eV and 9.9516 +/- 0.0006 eV, respectively. cis-Propanal, which is the more stable conformer in the neutral state, becomes less stable in the cation compared to gauche-propanal. Vibrational structures revealed in the MATI spectra indicate that cis and gauche isomers undergo their unique structural changes upon ionization. The ionization of gauche-propanal induces a geometrical change along the conformational coordinate, suggesting that the steric effect in the ground state is diminished upon ionization. Natural bonding orbital (NBO) calculations provide the extent of hyperconjugation in each conformational isomer of propanal.  相似文献   

2.
硫氧化碳OCS是线性三原子分子,这类小分子的激发态、离子态能级结构、能级之间的相互作用及电离过程,是研究中所关心的问题.Tanaka等[1]和Kopp[2]测量了OCS的VUV吸收光谱,Frey和Schlag等[3]以同步辐射光源,用光电离共振(PIR)谱方法、Kovac[4]和Wang,Shirley等[5]以Hel为电离光源,分别采用传统的光电子能谱和高分辨光电子能谱技术研究了CO2、CS2和OCS分子从电子振动基态吸收单个光子而电离的过程.Yang和Anderson等问为了作选态的离子一分子反应利用可调谐激光rt光子吸收将OCS选择激发到某一中间态,OCS再吸收光子后…  相似文献   

3.
We report studies of a supersonically cooled 2-indanol using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. In the REMPI experiment, we have identified three conformers of 2-indanol and assigned the vibrational structures of the first electronically excited state for the two major conformers. Conformer Ia contains an intramolecular hydrogen bond between the -OH group and the phenyl ring, while conformer IIb has the -OH group in the equatorial position. We have further investigated the vibrational spectroscopy of the cation for the two major conformers using the ZEKE spectroscopy. The two conformers display dramatically different vibrational distributions. The ZEKE spectrum of conformer Ia shows an extensive progression in the puckering mode of the five member ring, indicating a significant geometry change upon ionization. The ZEKE spectra of conformer IIb are dominated by single vibronic transitions, and the intensity of the ZEKE signal is much stronger than that of conformer Ia. These results indicate an invariance of the molecular frame during ionization for conformer IIb. We have performed ab initio and density functional theory calculations to obtain potential energy surfaces along the dihedral angle involving the -OH group for all three electronic states. In addition, we have also calculated the vibrational distribution of the ZEKE spectrum for the puckering mode of the five member ring. Not only the vibrational frequencies but also the intensity distributions for both conformers have been reproduced satisfactorily. The adiabatic ionization energies have been determined to be 68 593+/-5 cm(-1) for conformer Ia and 68 981+/-5 cm(-1) for conformer IIb.  相似文献   

4.
Infrared spectra (3500-50 cm(-1)) of gaseous and solid, and Raman spectrum (3500-30 cm(-1)) of liquid vinyldifluorosilane, CH(2)z.dbnd6;CHSiF(2)H, are reported. Both the cis and gauche rotamers have been identified in the fluid phases. From temperature-dependent FT-infrared spectra of krypton solutions, it is shown that the cis conformer is more stable than the gauche form by 119+/-12 cm(-1) (1.42+/-0.14 kJ mol(-1)). At ambient temperature there is 53+/-2% of the gauche conformer present. Complete vibrational assignments are provided for the cis conformer and several modes are identified for the gauche form. Harmonic force constants, fundamental frequencies, infrared intensities, and Raman activities have been obtained from MP2/6-31G(d) calculations with full electron correlation. The optimized geometries and conformational stabilities have also been obtained from ab initio MP2/6-31G(d), MP2/6-311+G(d,p), and MP2/6-311+G(2d,2p) calculations with full electron correlation as well as from density functional theory calculations (DFT) by the B3LYP method. The SiH bond distances (r(0)) of 1.472 and 1.471 A have been obtained for the cis and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. These results are compared to the corresponding quantities of the corresponding carbon analogue as well as with some similar molecules.  相似文献   

5.
Yencha AJ  Lopes MC  King GC  Hochlaf M  Song Y  Ng CY 《Faraday discussions》2000,(115):355-62; discussion 407-29
The pulsed-field ionization (PFI) photoelectron (PE) spectrum of HF has been recorded at the chemical dynamics beamline of the advanced light source over the photon energy range 15.9-16.5 eV using a time-of-flight selection scheme at a resolution of 0.6 meV. Rotationally-resolved structure in the HF+(X 2 pi 3/2, 1/2, v+ = 0, 1) band systems are assigned. The spectral appearance of these systems agrees with a previous VUV laser PFI-PE study. Importantly, extensive rotationally-resolved structure between these two vibrational band systems is also observed. This is attributed to ion-pair formation via Rydberg states converging on the v+ = 1 vibrational levels of the HF+(X 2 pi 3/2, 1/2) spin-orbit states. These Rydberg states are assigned to the 1 sigma+ part of the nd-complexes (sigma, pi, and delta). Ion-pair formation is observed in this study by the detection of F- ions. Some partially rotationally-resolved structure in a previously published threshold photoelectron spectrum is similarly attributed to ion-pair formation (F- detection) through a combination of the v+ = 17 level of the (A 2 sigma+) 3s sigma Rydberg state and the (X 2 pi 3/2, 1/2, v+ = 1) 7d Rydberg states. On the basis of the present study, an accurate experimental value for the dissociation energy of the ground state of HF has been obtained, D0(HF) = 5.8650(5) eV.  相似文献   

6.
Raman and infrared spectra of n-butyl, isobutyl, sec-butyl and tert-butyl nitrite are reported. Density functional theory and M?eller-Plesset calculations with 6-31G* and 6-311G* basis sets were used to determine ground state molecular geometries and vibrational frequencies of these compounds. Calculations and spectral data of these molecules were used to perform partial vibrational mode assignments for the observed transitions. In agreement with previous investigations of alkyl nitrites, cis and trans rotational conformers of n-butyl, isobutyl and sec-butyl nitrite were observed in the gas phase infrared spectra and the condensed phase Raman and infrared spectra. Among the several predicted geometries of these compounds, the cis-trans geometry (cis with respect to the C-O-N=O dihedral angle and trans with respect to the C-C-O-N dihedral) was calculated to be the most stable conformer of n-butyl and isobutyl nitrite, while the cis-gauche conformer was found to be the most stable geometry of sec-butyl nitrite. The cis-type structures of these three molecules are favored due to formation of a pseudo hydrogen bond between the nitrite group and the alpha-carbon hydrogen atoms. Hindrance with the alkyl moiety, however, causes the trans conformer (trans with respect to the C-O-N=O dihedral) of tert-butyl nitrite to lie lower than its cis conformer, a result that was supported by our spectroscopic measurements. The characteristic N=O stretch frequency for the trans conformers of all the compounds examined was observed to decrease with increasing branching at the alpha-carbon, while the same mode for the cis conformers shows no change among the primary and secondary nitrites. Evidence is also provided that suggests that the relative number of cis conformers to trans conformers decreases as the alpha-carbon branching increases.  相似文献   

7.
An experimental two-color photoionization dynamics study of laser-excited Br2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X 1Sigmag + -B 3Pi0+u transition in Br2 is excited at 527 nm corresponding predominantly to excitation of the v' = 28 vibrational level in the B 3Pi0+u state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X 2Pi32,12 state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B 3Pi0+u state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br2(X 1Sigmag+, v" = 0)-Br2 +(X 2Pi12,32, v+) and Br2(B 3Pi0+u, v' = 28)-Br2 +(X 2Pi12,32, v+) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v" = 0 electronic ground state (X 1Sigmag+) versus the electronically and vibrationally excited state (B 3Pi0+u, v' = 28).  相似文献   

8.
The infrared (3200-30 cm(-1) spectra of gaseous and solid, the Raman spectra (3200-30 cm(-1)) of the liquid and solid vinyl silyl bromide, CH2CHSiH2Br, have been recorded. Additionally, quantitative depolarization values have been obtained. Both the gauche and cis conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature studies from 0 to -87 degrees C of the Raman spectrum of the liquid was carried out. From these data, the enthalpy difference has been determined to be 22 +/- 6 cm(-1) (0.26 +/- 0.08 kJ/mol), with the gauche conformer being the more stable form. The predictions from the ab initio calculations up to MP2/6-311 + + G(2d,2p) basis set favor the gauche as the more stable form. A complete vibrational assignment is proposed for both the gauche and cis conformers based on infrared band contours, relative intensities, depolarization values and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations and the potential energy terms for the conformer interconversion have been obtained from the same calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311 + + G(2d,2p) at levels of restricted Hartree-Fock (RHF) and/or Moller-Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

9.
The dissociation dynamics of the 6s and 4d Rydberg states of carbon disulfide (CS(2)*) are studied by time-resolved photoelectron spectroscopy. The CS(2) is excited by two photons of 267 nm (pump) to the 6s and 4d Rydberg states and probed by ionization with either 800 or 400 nm. The experiments can distinguish and successfully track the time dynamics of both spin [1/2] (upper) and [3/2] (lower) cores of the excited Rydberg states, which are split by 60 meV, by measuring the outgoing electron kinetic energies. Multiple mode vibrational wave packets are created within the Rydberg states and observed through recurrence interferences in the final ion state. Fourier transformation of the temporal response directly reveals the coherent population of several electronic states and vibrational modes. The composition of the wave packet is varied experimentally by tuning the excitation frequency to particular resonances between 264 and 270 nm. The work presented here shows that the decay time of the spin components exhibits sensitivity to the electronic and vibrational states accessed in the pump step. Population of the bending mode results in an excited state lifetime of as little as 530 fs, as compared to a several picosecond lifetime observed for the electronic origin bands. Experiments that probe the neutral state dynamics with 400 nm reveal a possible vibrationally mediated evolution of the wave packet to a different Franck-Condon window as a consequence of Renner-Teller splitting. Upon bending, symmetry lowering from D(infinityh) to C(2v) enables ionization to the CS(2) (+) (B (2)Pi(u)) final state. The dissociation dynamics observed are highly mode specific, as revealed by the frequency and temporal domain analysis of the photoelectron spectra.  相似文献   

10.
The infrared (3500-50 cm−1) and Raman (3500-20 cm−1) spectra of 1,2-pentadiene, H2C=C=C(H)CH2CH3 (ethyl allene), have been recorded for both the gaseous and solid states. Additionally, the Raman spectrum of the liquid has been obtained with qualitative depolarization values. In the fluid phases both the cis and gauche conformers have been identified, with the gauche rotamer being the predominant form although it may not be the conformer of lowest energy. In the solid state only the cis conformer remains after repeated annealing of the crystal. The asymmetric torsion of the cis conformer is observed as a series of Q-branch transitions beginning at 103.4 cm−1 and falling to lower frequency. An estimate of the potential function governing conformer interconversion is provided. A complete assignment of the normal modes for the cis conformer is given and several of the fundamentals are assigned for the gauche rotamer. Ab initio electronic structure calculations of energies, conformational geometries, vibrational frequencies, and potential energy functions have been made to complement and assist the interpretation of the infrared and Raman spectra. In particular, the transitions among torsional energy levels for both the symmetric (methyl) and asymmetric (ethyl) motions have been calculated. The results are compared to the corresponding quantities for some similar molecules.  相似文献   

11.
The NO(+) states lying in the ionization region of 20-40 eV have been investigated by high-resolution threshold photoelectron spectroscopy and a configuration interaction calculation. Substantial agreement between the structures on the present experimental and theoretical spectra in the 21-27 eV range enables us to assign the relevant inner-valence ionic states unambiguously. The dissociation products from the ion states are measured with threshold photoelectron-photoion coincidence spectroscopy, and the dissociation processes are discussed with reference to the potential energy curves calculated. Sharp peaks are observed in the ionization region of 27.5-35 eV, which are allocated to ionic Rydberg states converging to NO(2+).  相似文献   

12.
The structure of SF(5)OSO(2)F has been investigated using gas-phase electron diffraction and quantum-chemical calculations. It is found to exist primarily in the gauche form (SF(5) group gauche relative to the S-F bond of the SO(2)F group with phi(S-O-S-F = 71(7) degrees ). A small contribution of the trans conformer cannot be excluded. Photoelectron spectroscopy gives ionization energies for the sulfur 2p electrons that reflect the relative electronegativities of fluorine and oxygen. The widths of the peaks in the photoelectron spectra indicate that there is considerable vibrational excitation associated with the core ionization of the sulfur atoms.  相似文献   

13.
The photoionization dynamics of pyrrole are investigated by using a photoelectron imaging method and a tunable femtosecond laser. Two-photon nonresonant ionization experiments in the wavelength range from 261 to 298 nm indicate that the cation and neutral ground states have similar structures. The main vibrational excitation in the cation ground state is the v(8) mode. Two-photon absorption at 406 nm projects neutral pyrrole into a mixed state comprising the 1B(2) valence and 3p Rydberg states. Ionization from this mixed state mainly results in the overtone excitation of vibrational mode v(8) and v(9) of the cation state. In the wavelength range from 336 to 364 nm, a mixed state comprising the 3d/4s Rydberg and the 4A(1) valence states are populated by the absorption of two photons through vibronic coupling. The partition ratio among these states varies with the excitation wavelength, resulting in dramatic changes in both kinetic energy distributions and angular distributions. As the laser wavelength becomes shorter, from 336 to 314 nm, higher excited states, 3B(2), 5A(1), 6A(1), 7B(1) and 4B(2), can be populated. Photoelectron angular distributions provide supplementary verification of assignments. Our experiments indicate that femtosecond multiphoton ionization and photoelectron imaging methods are powerful tools for investigating short-lived intermediated excited states, which cannot be detected in nanosecond experiments.  相似文献   

14.
The energies, vibrational frequencies and IR intensities of cis- and trans-N-acetyl-L-alanine (NAAL) are computed using the density functional theory (B3LYP) combined with the 6-311G(d, p) basis set. The trans conformer is characterized by an intramolecular NH ... O hydrogen bond leading to the formation of a five-membered ring and is by 23 kJ mol(-1) more stable than the cis conformer. The difference between the vibrational frequencies and IR intensities computed for the two conformers is discussed. The IR spectra at different temperatures and the Raman spectra of solid NAAL and its deuterated counterpart are investigated and discussed. The frequencies of the v(OH) vibration and the isotopic ratio suggest the formation of short OH ... O hydrogen bonds in the solid state. The NH group seems also to be involved in a weak hydrogen bond.  相似文献   

15.
Geometric parameters, harmonic and anharmonic vibrational frequencies, conformer energy differences and barriers to internal rotation were obtained for dicyclopropyl ketone (DCPK) in the ground electronic state through MP2, DFT, CCSD and CCSD(T) calculations. VFPA was used to improve the estimations of conformer energy differences and heights of barriers to internal rotation. The ab initio calculations demonstrated that there are three stable conformations of DCPK: the cis–cis, the cis–trans and the gauche–gauche. The energy of the gauche–gauche conformer is noticeably higher than the energy of the two other conformers, so this conformer was not found experimentally. To study the conformational dynamics of the DCPK molecule, one- and two-dimensional sections of the potential energy surface corresponding to the rotations of the cyclopropyl groups were calculated. These sections were used to calculate torsion transition energies and vibrational wave functions in anharmonic approach. It was found that there is a strong coupling of large-amplitude torsion motions in the area of the cis–cis and gauche–gauche conformers.  相似文献   

16.
Variable temperature (-55 to -155 degrees C) infrared spectra of rare gas solutions of 2-chloro-3-fluoropropene, H2C=C(Cl)CH2F, have been recorded from 3500 to 400 cm(-1). The relative intensities of 16 conformer pairs at ten different temperatures of a krypton solution have been measured and from these data an enthalpy difference of 271+/-27 cm(-1) (3.17+/-0.32 kJ x mol(-1)) has been obtained with the cis conformer the more stable form. Similar studies were also carried out in xenon and an enthalpy difference of 334+/-33 cm(-1) (4.00+/-0.39 kJ x mol(-1)) was obtained again with the cis conformer the more stable form. It is estimated that there is 35+/-2% of the gauche conformer present at ambient temperature. However, in the crystalline solid the gauche conformer is the stable rotamer. Extensive ab initio calculations with full electron correlation by the perturbation method at the MP2 level with a variety of basis sets as well as density functional theory calculations (DFT) by the B3LYP method have been carried out. Several of these calculations predict an energy difference in the range of 400 cm(-1) with the cis form the more stable conformer but most of the predicted energy differences are significantly larger than the experimentally determined value. The spectroscopic and theoretical results are discussed and compared with the corresponding quantities for some similar molecules.  相似文献   

17.
Density functional theory (DFT), using the B3-LYP/6-31G(d,p) method have been used to investigate the conformation and vibrational spectra of aminopropylsilanetriol (APST) NH2CH2CH2CH2Si(OH)3. The potential function for CCCSi torsion gives rise to two distinct conformers trans and gauche. The predicted energy of the more stable trans conformer is 337 cm-1 less than the energy of gauche conformer. The calculated barriers to the conformation interchange are: 1095, 2845 and 438 cm-1 for the trans to gauche, gauche to gauche and gauche to trans conformers, respectively. For the trans conformer the potential energy curve for the Si(OH)3 groups torsion in APST has been calculated changing the HOSiC dihedral angle. The barrier for the internal rotation of 3065 cm-1 has been obtained. The optimized molecular structure of APST dimer calculated for trans conformer has a SiOSi angle of 143.2 degrees, and a SiOSi bond length of 0.164 nm. A complete vibrational assignment for both conformers as well as for trans-dimer is supported by the normal coordinate analysis, calculated IR intensities as well as Raman activities. On the basis of the results, the vibrational spectra of APST aqueous solution and APST polymer have been analyzed. The average error between the observed and calculated frequencies is 14 cm-1.  相似文献   

18.
The electronic states of diazomethane in the region 3.00-8.00 eV have been characterized by ab initio calculations, and electronic transitions in the region 6.32-7.30 eV have been examined experimentally using a combination of 2 + 1 REMPI spectroscopy and photoelectron imaging in a molecular beam. In the examined region, three Rydberg states of 3p character contribute to the transitions, 2(1)A2(3p(y) <-- pi), 2(1)B1(3p(z) <-- pi), and 3(1)A1(3p(x) <-- pi). The former two states are of mostly pure Rydberg character and exhibit a resolved K structure, whereas the 3(1)A1(3p(x) <-- pi) state is mixed with the valence 2(1)A1(pi* <-- pi) state, which is unbound and is strongly predissociative. Analyses of photoelectron kinetic energy distributions indicate that the ground vibrational level of the 2(1)B1(3p(z)) state is mixed with the 2(1)A2(3p(y)) nu(9) level, which is of B1 vibronic symmetry. The other 2(1)A2(3p(y)) vibronic states exhibit pure Rydberg character, generating ions in single vibrational levels. The photoelectron spectra of the 3(1)A1(3p(x) <-- pi) state, on the other hand, give rise to many states of the ion as a result of strong mixing with the valence state, as evidenced also in the ab initio calculations. The equilibrium geometries of the electronic states of neutral diazomethane were calculated by CCSD(T), using the cc-pVTZ basis, and by B3LYP, using the 6-311G(2df,p) basis. Geometry and frequencies of the ground state of the cation were calculated by CCSD(T)/cc-pVTZ, using the unrestricted (UHF) reference. Vertical excitation energies were calculated using EOM-CCSD/6-311(3+,+)G* at the B3LYP optimized geometry. The theoretical results show that the 2(1)A2(3p(y) <-- pi) and 2(1)B1(3p(z) <-- pi) states have geometries similar to the ion, which has C(2v) symmetry, with slight differences due to the interactions of the electron in the 3p orbital with the nuclei charge distributions. The geometry of the 3(1)A1(3p(x) <-- pi) state is quite different and has Cs symmetry. The experimental and theoretical results agree very well, both in regard to excitation energies and to vibrational modes of the ion.  相似文献   

19.
The scope of the present work is to reconcile electron momentum spectroscopy with elementary thermodynamics, and refute conclusions drawn by Saha et al. in J. Chem. Phys. 123, 124315 (2005) regarding fingerprints of the gauche conformational isomer of 1,3-butadiene in electron momentum distributions that were experimentally inferred from gas phase (e,2e) measurements on this compound [M. J. Brunger et al., J. Chem. Phys. 108, 1859 (1998)]. Our analysis is based on thorough calculations of one-electron and shake-up ionization spectra employing one-particle Green's function theory along with the benchmark third-order algebraic diagrammatic construction [ADC(3)] scheme. Accurate spherically averaged electron momentum distributions are correspondingly computed from the related Dyson orbitals. The ionization spectra and Dyson orbital momentum distributions that were computed for the trans-conformer of 1,3-butadiene alone are amply sufficient to quantitatively unravel the shape of all available experimental (e,2e) electron momentum distributions. A comparison of theoretical ADC(3) spectra for the s-trans and gauche energy minima with inner- and outer-valence high-resolution photoelectron measurements employing a synchrotron radiation beam [D. M. P. Holland et al., J. Phys. B 29, 3091 (1996)] demonstrates that the gauche structure is incompatible with ionization experiments in high-vacuum conditions and at standard temperatures. On the other hand, outer-valence Green's function calculations on the s-trans energy minimum form and approaching basis set completeness provide highly quantitative insights, within approximately 0.2 eV accuracy, into the available experimental one-electron ionization energies. At last, analysis of the angular dependence of relative (e,2e) ionization intensities nicely confirms the presence of one rather intense pi(-2) pi(*+1) satellite at approximately 13.1 eV in the ionization spectrum of the s-trans conformer.  相似文献   

20.
The infrared (3200-30 cm(-1) spectra of gaseous and solid and the Raman spectra of liquid (3200-30 cm(-1), with quantitative depolarization values, and solid vinyldichlorosilane, CH2=CHSiHCl2, have been recorded. Both the gauche and the cis conformers have been identified in the fluid phases. Variable temperature (105-150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy difference has been determined to be 20 +/- 5 cm(-1) (235 +/- 59 J mol(-1) with the gauche conformer the more stable rotamer. It was not possible to obtain a single conformer in the solid even with repeated annealing of the sample. The experimental enthalpy difference is in agreement with the prediction from MP2/6-311 + G(2d,2p) ab initio calculations with full electron correlation. However, when smaller basis sets, i.e. 6-31G(d) and 6-311 + G(d,p) were utilized the cis conformer was predicted to be the more stable form. Complete vibrational assignments are proposed for both conformers based on infrared contours, relative infrared and Raman intensities, depolarization values and group frequencies, which are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. From the frequencies of the Si-H stretches, the Si-H bond distance of 1.474 A has been determined for both the gauche and the cis conformers. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G(d), 6-311 + G(d,p) and 6-311 + (2d,2p) basis sets at level of Hartree-Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The potential energy terms for the conformer interconversion have been obtained from the MP2/6-31G(d) calculations. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号