首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation and low energy collision-induced dissociation (CID) of doubly charged metal(II) complexes ([metal(II)+L n ]2+, metal(II)=Co(II), Mn(II), Ca(II), Sr(II) and L = acetonitrile, pyridine, and methanol) were investigated. Complexes of [metal(II)+L n ]2+ where n≤7 were obtained using electrospray ionization. Experimental parameters controlling the dissociation pathways for [Co(II)+(CH3CN)2]2+ were studied and a strong dependence of these processes on the collision energy was found. However, the dissociation pathways appear to be independent of the cone potential, indicating low internal energy of the precursor ions. In order to probe how these processes are related to intrinsic parameters of the ligand such as ionization potential and metal ion coordination, low energy CID spectra of [metal(II)+L n ]2+ for ligands such as acetonitrile, pyridine, and methanol were compared. For L = pyridine, all metals including the alkaline earth metals Ca and Sr were reduced to the bare [metal(I)]+ species. Hydride transfer was detected upon low energy CID of [metal(II)+L n ]2+ for metal(II)=Co(II) and Mn(II) and L = methanol, and corroborated by signals for [metal(II)+H?]+ and [metal(II)+H?+CH3OH]+, as well as by the complementary ion [CH3O]+.  相似文献   

2.
Complex formation of magnesium(II), manganese(II), nickel(II), copper(II) and lead(II) with S-carboxymethyl-L-cysteine in aqueous solution.The complex formation between Mg(II), Mn(II), Ni(II). Cu(II), Pb(II) ions and S-carboxy-methyl-l-cysteine (H2A) has been studied by measurement of pH at 25°C and constant ionic strength (1 M NaClO4). Although no interaction occurs with Mg(II), this work provides evidence for a variety of complexes: MnA; CuHA+; CuA; CuA22-; NiHA+; NiA; NiA22-; PbHA+; PbA et PbA(OH)-. The overall formation constants of all these species are computed and refined. The results allow the determination of the distribution of the complexes as a function of pH; some structural features of the metal complexes in solution are indicated.  相似文献   

3.
The reaction of Be · aq2+ with OH? leeds not only to loss of protons by the metalaquo ion but also to structural changes in the solvation sphere. These can be studied by following the pH variations during the first decisecond after mixing the solutions of metal salt and alkali hydroxide. The equilibrium Be2+ ? BeOH+ is reached within 5 milliseconds if acid free Beryllium solutions are used. If the metal solution is strongly acidic, however, the establishment of the equilibrium needs more time because of the slowness of the process H+ + BeOH+ → Be2+ (k ~ 105 M?1, s?1). The extraction of two protons produces in the first instance an unstable Be(OH) species which transforms into the stable isomer Be(OH)2 (solvatation isomerism) in a first-order reaction of half-life of 7 ms. This isomerisation causes almost complete disappearance of BeOH+ from the equilibrium Be2+ ? BeOH+ ? Be(OH)2. (KAKIHANA & SILLEN state that the relaxed solutions contain only Be2+, Be(OH)2, Be3(OH) and some Be2OH3+.) The formation of the polynuclear species Be3(OH) needs about 30 seconds to go to completion.  相似文献   

4.
The effects of ammonium sulfate aerosols on the kinetics of the hydroxyl radical reactions with C1–C6 aliphatic alcohols have been investigated using the relative rate technique. P‐xylene was used as a reference compound for the C2–C6 aliphatic alcohols study, and ethanol was used as a reference compound for the methanol study. Two different aerosol concentrations that are typical of polluted urban conditions were tested. The total surface areas of aerosols were 1400 μm2 cm?3 (condition I) and 3400 μm2 cm?3 (condition II). Results indicate that ammonium sulfate aerosols promote the ethanol/OH radical and 1‐propanol/OH radical reactions as compared to the p‐xylene/OH radical reaction. The relative rate of the ethanol/·OH reaction versus the p‐xylene/·OH reaction increased from 0.19 ± 0.01 in the absence of aerosols to 0.24 ± 0.01 and 0.26 ± 0.02 under aerosol conditions I and II, respectively. The relative rate of the 1‐propanol/·OH reaction versus the p‐xylene/·OH reaction increased from 0.45 ± 0.03 in the absence aerosols to 0.56 ± 0.02 and 0.55 ± 0.03 under aerosol conditions I and II, respectively. However, significant changes in the relative rates of the 1‐butanol/·OH, 1‐pentanol/·OH, and 1‐hexanol/·OH reactions versus the p‐xylene/·OH reaction were not observed for either aerosol concentration. The relative rates of the methanol/·OH reaction versus the ethanol/·OH reaction were identical in the absence and presence of aerosols. These results indicate that ammonium sulfate aerosols promote the methanol/·OH reaction as much as the ethanol/·OH reaction (as compared to the p‐xylene/·OH reaction). © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 422–430, 2001  相似文献   

5.
Cobalt sulfide coatings have been investigated by means of cyclic voltammetry in 0.1 M KClO4 and 0.1 M NaOH solutions and analyzed using X-ray photoelectron spectroscopy. They have been shown to contain CoS(OH), CoS and Co(OH)2. After treating such Co sulfide coatings with AgNO3 solution, their composition changes: both the cobalt and oxygen content decreases and Ag (up to 85 at%) appears in the coating as Ag2S, Ag2O and metallic Ag. Co(II) compounds react with Ag+ ions according to an exchange reaction [CoS+2Ag++2H2O→Ag2S+Co(OH)2+2H+]. In the course of the reaction of Co(OH)2 with silver ions, a redox process occurs, giving metallic silver [Co(OH)2+Ag++H2O→Ag°+Co(OH)3+H+ or Co(OH)2+Ag+→Ag°+CoO(OH)+H+]. Ag2S reduction takes place at more positive potentials than Cu reduction; therefore sulfide layers of cobalt modified with silver ions, unlike unmodified ones, may be plated with Cu from both acid and alkaline electrolytes. Electronic Publication  相似文献   

6.
The reactions of 4‐hydroxy‐2,2,6,6‐tetramethylpiperidinium N‐oxide, an oxammonium ion abbreviated R2NO+, have been studied. The previously unreported triflate salt was used in this study because the anions of the usual chloride and bromide salts can themselves be oxidized. Reactions between R2NO+ and alcohols produce ketones and aldehydes; the rate constant for PhCH2OH is 4.4 × 10−3 L mol−1 s−1 in acetonitrile at 298 K. The immediate product is the hydroxylamine, R2NOH, but its further comproportionation reaction with R2NO+ yields the stable piperidinyl oxyl radical, R2NO·. The rate constant of this reaction is 1.78 × 103 L mol−1 s−1 at 298 K. The possibility of using R2NO+ and MTO as co‐catalysts for the oxidation of alcohols was explored, but the competitive rates are such that the resultant is not particularly attractive. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 381–385, 1999  相似文献   

7.
Summary: Three pyridine strong base anion exchangers as beads were obtained by quaternization reactions of a 4-vinylpyridine : 8% divinylbenzene copolymer of gel type. These resins possess methyl / ethyl / butyl radicals as substituents on N+ atoms and have exchange capacities of 4.80 mEq/g and 2.10 mEq/mL. For pyridine strong base anion exchangers, the behaviours in the retention processes of Cr(VI) as oxyanions and Ga(III) as [GaCl4] complex anion were evaluated with the bath method. All the resins exhibited retention properties, but the retained amounts of the metal cations are different as a function of the alkyl length as substituent on N+ atoms and the complex anion nature. Thus, Cr(VI) oxyanions are best retained by the resin with  CH3 as substituent on N+ atoms while [GaCl4] complex anion by the resin with  C4H9 as substituent on N+ atoms. By aminolysis reaction of an ethylacrylate : acrylonitrile : divinylbenzene copolymer as beads of macroporous type with NH2OH · HCl in the presence of C2H5OH a new chelating ion exchanger was performed which contains both amidoxime and hydroxamic acid functional groups. This ion exchanger has the retention property for different metal cations but its retention capacities values are strongly dependent of the nature of metal cation and the counterion as well as pH of the solution. Thus, in the static conditions Zn(II) cation with NOequation/tex2gif-stack-1.gif anion as counterion is retained with the best result at pH = 5. As an example, for the aqueous metal cation solution of 10−2 M concentration for Zn(NO3)2 the resin possess at equilibrium a retention capacity of 6.70 mmol Zn/g dry resin and for Cu(II) from Cu(NO3)2 solution of same concentration, the retention capacity is 0.22 mmol Cu/g dry resin and Fe(III) from Fe(NO3)3 solution is not retained.  相似文献   

8.
Thermal activation of molecular oxygen is observed for the late‐transition‐metal cationic complexes [M(H)(OH)]+ with M=Fe, Co, and Ni. Most of the reactions proceed via insertion in a metal? hydride bond followed by the dissociation of the resulting metal hydroperoxide intermediate(s) upon losses of O, OH, and H2O. As indicated by labeling studies, the processes for the Ni complex are very specific such that the O‐atoms of the neutrals expelled originate almost exclusively from the substrate O2. In comparison to the [M(H)(OH)]+ cations, the ion? molecule reactions of the metal hydride systems [MH]+ (M=Fe, Co, Ni, Pd, and Pt) with dioxygen are rather inefficient, if they occur at all. However, for the solvated complexes [M(H)(H2O)]+ (M=Fe, Co, Ni), the reaction with O2 involving O? O bond activation show higher reactivity depending on the transition metal: 60% for the Ni, 16% for the Co, and only 4% for the Fe complex relative to the [Ni(H)(OH)]+/O2 couple.  相似文献   

9.
The synthesis of two new polyamines containing 2-pyridyl and 6-methyl-(2-pyridyl) groups is described. The equilibria between H+ and Co2+ and the new ligand 1,9-di(2-pyridyl)-2,5,8-triazanonane (dptn) as well as the protonation of the hydroxo complexes of 1,6-di(2-pyridyl)-2,5-diazahexane-Co(II) (Co(dpdh) and 1-(6-methyl-2-pyridyl-6-(2-pyridyl)-2,5-diazahexane-Co(II) (Co(mdpdh)) have been studied in aqueous solution using the pH method. The coordination ability of the pyridine containing ligand dptn is compared with the chelating tendency of the analogous aliphatic amine (tetren). In spite of the lower basicity of the pyridine derivative the stability constants of its Co(II) complex is higher by a factor of thirty. The absorption spectra give evidence for a pseudooctahedral geometry of Co(dpdh) (H2O) and Co(dpdh)(H2O)(OH)+. Oxygen-uptake measurements indicate the formation of binuclear peroxo species. The potentiometric equilibrium data indicate the presence of dibridged species (dpdh)Co(O2, OH)Co(dpdh)3+ and (mdpdh)Co(O2, OH)Co-(mdpdh)3+. The kinetics of the rapid O2-uptake was measured over a wide pH range on a stopped-flow apparatus. For Co(dpdh)2+ and Co(mdpdh)2+ we found a second order rate constant independent of pH up to pH 9, but in more alkaline solutions it increases and reaches an upper limit around pH 12.3. The data could be fitted by a rate law of the form k1 = (k1[H+] + k1 KH) ([H+] + KH)?1. This variation with pH was explained by a rapid equilibrium Co(dpdh) (H2O) ? Co(dpdh)(H2O)(OH)+ + H+(KH). The enhanced rate constants of the hydroxo species must arise from a rate determining H2O replacement by O2, dominated by Co-OH2 bond breaking and the expected ability of an OH? group to labilize neighboring H2O molecules. The protonation constant of the hydroxo complex obtained by equilibrium measurements (pKH = 11.19 ± 0.03) was in good agreement with that derived from kinetic data (11.12 ± 0.04). The hydrolysis of Co(dptn)(H2O)2+ influences the rate of O2-incorporation in a different way. In this system retardation occurs as a result of hydrolysis ascribed to the slower leaving of OH? compared to H2O. This was expected if a mechanism with rate determining H2O replacements by O2 holds.  相似文献   

10.
Abstract

The thermodynamic parameters for protonation and Zn(II) complex formation with ligand 1,4,7,16,19,22-hexaza-10,13,25,28-tetraoxacyclotriacontane (L1) have been determined. L1 forms stable dizinc complexes from neutral to alkaline pH. The hydrolytic ability toward adenylyl(3′-5′)adenosine (ApA) of L1 and its dizinc(II) complexes have been analyzed by means of HPLC chromatography. Only partially protonated species of L promote ApA hydrolysis suggesting that the cleavage process is cooperatively promoted by a general base catalysis by neutral amine groups and a general acid catalysis by protonated ammonium functions. Concerning the Zn(II) complexes, the hydrolysis rates increase in the presence of the hydroxo complexes [Zn2L1(OH)]3+ and [Zn2L1(OH)2]2+. This indicates that Zn-OH functions play a crucial role in the hydrolytic process, assisting the deprotonation of the 2′-OH group of ApA, which may act as nucleophile in the cleavage process. Both binuclear L1 complexes are better catalysts than the mononuclear [ZnL2(OH)]+ complex (L2 = 1,4-Dioxa-7,10,13-triazacyclopentadecane), indicating a cooperative role of the two Zn(II) ions in ApA cleavage by [Zn2L1(OH)]3+ and [Zn2L1(OH)2]2+, probably due to a bridging coordination of the phosphate moiety of ApA to the two metal centers.  相似文献   

11.
The solutions containing one of the copper salts (CuCl2, Cu(ClO4)2, Cu(NO3)2, and CuSO4) and one of the non-steroidal anti-inflammatory drugs (NSAIDs, ibuprofen, ketoprofen or naproxen) were analyzed by electrospray ionization mass spectrometry. Three of the salts, namely CuCl2, Cu(ClO4)2 and Cu(NO3)2, yielded binuclear complexes of drug:metal stoichiometry 1:2. Existence of the complexes of such stoichiometry has not been earlier observed. For copper(II) chloride the complexes (ions of the type [M-HCOOH+Cu2Cl]+ and [M+Cu2Cl]+, M stands for the drug molecule) were formed in the gas phase. When copper(II) perchlorate or copper(II) nitrate was used, the observed binuclear copper complexes (ions of the type [M-H+Cu2(ClO4)2+CH3OH]+, [M-H+Cu2(ClO4)2]+ and [M-H+Cu2(NO3)2+CH3OH]+, [M-H+Cu2(NO3)2]+) were observed at low cone voltage, thus these complexes must have already existed in the solution analysed. Therefore, such complexes may also exist under physiological conditions.   相似文献   

12.
Ion/molecule reactions of ‘bare’ FeO+ with linear and branched aliphatic alcohols have been examined by Fourier-transform ion-cyclotron resonance mass spectrometry. Depending on the chain length of the alcohol, three different types of reactions can be distinguished: (i) Oxidation of the alcohols in the α-positions, to yield the corresponding carbonyl-Fe+ complexes, involves an initial O? H bond activation of the alcohol resulting in the formation of RO? Fe+? OH as the central intermediate. (ii) The formation of Fe(OH), concomitant by loss of the corresponding neutral alkenes, competes with the generation of neutral OFeOH and a carbocation R+. These couples point to the existence of an intracomplex acid-base equilibrium and are connected with each other by a proton transfer from either acid to the other, e.g. i-C3H + OFeOH?C3H6 + Fe(OH). The process is driven by the Lewis acidity of FeO+ and starts with the abstraction of a hydroxide anion from the alcohol. (iii) For longer alcohols, e.g. pentanol, functionalization of non-activated C? H bonds which are remote from the O functionality is observed. Here, the OH group of the alcohol serves as an anchor, which directs the reactive metal-oxide cation toward a particular site of the hydrocarbon chain.  相似文献   

13.
The Absolute rate constants for the gas-phase reactions of NO3 with HO2 and OH have been determined using the discharge flow laser magnetic resonance method (DF-LMR). Since OH was found to be produced in the reaction of HO2 with NO3, C2F3Cl was used to scavenge it. The overall rate constant, k1, for the reaction, HO2 + NO3 → products, was measured to be k1=(3.0 ± 0.7)×10?12 cm3 molecule?1 s?1 at (297 ± 2) K and P=(1.4 – 1.9) torr. This result is in reasonable agreement with the previous studies. Direct detection of HO2 and OH radicals and the use of three sources of NO3 enabled us to confirm the existence of the channel producing OH:HO2+NO3→OH+NO2+O2 (1a); the other possible channel is HO2+NO3→HNO3+O2 (1b). From our measurements and the computer simulations, the branching ratio, k1a/(k1a + k1b), was estimated to be (1.0). The rate coefficient for the reaction of OH with NO3 was determined to be (2.1 ± 1.0) × 10?11 cm3 molecule?1 s?1. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
The temperature dependence of the isobutane chemical ionization (CI.) mass spectra of 54 open-chain, cyclic and unsaturated C5- to C10-alcohols was studied at temperatures ranging from 60 to 250°, and enthalpy changes were calculated for the corresponding main reactions of typical alcohols. The CI. reactivity is controlled by the temperature and the substrate structure as usual, and in addition, by the molecular size. The combination of thermal, structural and substrate-size effects leads to the following main conclusions. At low-reactivity conditions, i.e. at 150° or less, the alcohols with less than 11 C-atoms give four distinct types of spectra, with (M – OH)+ usually as the base peak. The characteristic ions are MC4H9+ and (M – H)+ for primary, MH+ and (MC4H9 – H2O)+ for secondary, (MC4H9 – H2O)+ for tertiary and allyl-type alcohols. Configurational assignments of stereoisomeric alcohols are also possible, by means of steric compression and shielding effects. The MH+/(M – OH)+ ratio in the spectra of epimeric methylcyclohexanols is at least 3 to 4 times higher for the isomers with mainly axial OH-group conformation compared to the equatorial isomers. Stereospecific (M - H)+ ions are apparently formed from trans-2-methylcyclopentanol and endo-norbornan-2-ol by a favorable abstraction of the unshielded H(α)-atoms versus normal behavior of the other epimers. While the spectra recorded at 200° show almost exclusively (M – OH)+ ions, those at 250° give nevertheless some C-skeleton information through the temperature dependent decomposition of the (M – OH)+ ions.  相似文献   

15.
Metal atoms were deposited on an Si (111)-7 × 7 surface, and they were adsorbed with alcohol gases (CH3OH/C2H5OH/C3H7OH). Initially, CnH2n+1OH adsorption was simply used as an intermediate layer to prevent the chemical reaction between metal and Si atoms. Through scanning tunneling microscopy (STM) and a mass spectrometer, the CnH2n+1OH dissociation process is further derived as the construction of a surface quasi-potential with horizontal and vertical directions. With the help of three typical metal depositions, the surface characteristics of CH3OH adsorption are more clearly presented in this paper. Adjusting the preheating temperature, the difference of thermal stability between CH3O and H+ could be obviously derived in Au deposition. After a large amount of H+ was separated, the isolation characteristic of CH3O was discussed in the case of Fe deposition. In the process of building a new metal-CH3O-H+ model, the dual characteristics of CH3OH were synthetically verified in Sn deposition. CH3O adsorption is prone to influencing the interaction between the metal deposition and substrate surface in the vertical direction, while H+ adsorption determines the horizontal behavior of metal atoms. These investigations lead one to believe that, to a certain extent, the formation of regular metal atomic structures on the Si (111)-7 × 7-CH3OH surface is promoted, especially according to the dual characteristics and adsorption models we explored.  相似文献   

16.
Chiral assembly and asymmetric synthesis are critically important for the generation of chiral metal clusters with chiroptical activities. Here, a racemic mixture of [K(CH3OH)2(18‐crown‐6)]+[Cu5(StBu)6]? ( 1?CH3OH ) in the chiral space group was prepared, in which the chiral red‐emissive anionic [Cu5(StBu)6]? cluster was arranged along a twofold screw axis. Interestingly, the release of the coordinated CH3OH of the cationic units turned the chiral 1?CH3OH crystal into a mesomeric crystal [K(18‐crown‐6)]+[Cu5(StBu)6]? ( 1 ), which has a centrosymmetric space group, by adding symmetry elements of glide and mirror planes through both disordered [Cu5(StBu)6]? units. The switchable chiral/achiral rearrangement of [Cu5(StBu)6]? clusters along with the capture/release of CH3OH were concomitant with an intense increase/decrease in luminescence. We also used cationic chiral amino alcohols to induce the chiral assembly of a pair of enantiomers, [d /l ‐valinol(18‐crown‐6)]+[Cu5(StBu)6]? ( d /l ‐Cu5V ), which display impressive circularly polarized luminescence (CPL) in contrast to the CPL‐silent racemic mixture of 1?CH3OH and mesomeric 1 .  相似文献   

17.
In Suzuki–Miyaura reactions, anionic bases F? and OH? (used as is or generated from CO32? in water) play multiple antagonistic roles. Two are positive: 1) formation of trans‐[Pd(Ar)F(L)2] or trans‐[Pd(Ar)‐ (L)2(OH)] (L=PPh3) that react with Ar′B(OH)2 in the rate‐determining step (rds) transmetallation and 2) catalysis of the reductive elimination from intermediate trans‐[Pd(Ar)(Ar′)(L)2]. Two roles are negative: 1) formation of unreactive arylborates (or fluoroborates) and 2) complexation of the OH group of [Pd(Ar)(L)2(OH)] by the countercation of the base (Na+, Cs+, K+).  相似文献   

18.
Radiation removal of Co2+ and Ni2+ ions from aqueous solutions containing Me2+ and various scavengers for OH radicals has been studied. In nondeaerated solutions containing HCOOK as OH radical scavenger, two mechanisms of removal were found: reduction leading to the insoluble colloidal metals and precipitation causing predominant formation of carbonate. The processes taking place are mainly affected by the concentration of formate scavenger and depend on the type of metal ions in solution.In the presence of aliphatic alcohols as OH radical scavengers at pH in the interval 6–8, the radiation treatment leads to the metallic product. The efficiency of reduction depends on the rate constant for the reaction of Me+ intermediate with corresponding alcohol radical.  相似文献   

19.
Two series of bonding isomers of Ni(II) coordination compounds with tetradentate quasimacrocyclic ligands based on S-substituted isothiocarbohydrazides were characterized by electron impact (EI) mass spectrometry and by tandem mass spectrometry methods. Conventional EI mass spectra were more isomer specific than metastable ion (MI) and collision induced dissociation (CID) mass spectra of the molecular ions. The MI (and CID) mass spectra of the isomers were very similar. This effect resulted from a facile randomization of Ni–N bonds in the ions possessing low internal energies, prior to their dissociation. The compounds were found to be convenient precursors for coordinatively unsaturated metal-containing ions, [NiLn]+ and [RNiLn]+ (n = 1, 2; L = NCCH3, NCSCH3; R = OH, NO). Most of these species had a structure of mono- or disolvated nickel ion. The dissociation of [HONiNCCH3]+ ions was consistent with the formation of two isomers: one corresponding to the [HONi]+ ion solvated by acetonitrile and the other is a complex of H2O with [NiNCCH2]+. A structure of [HO,Ni,(NCCH3)2]+ ions was best represented by a five-membered cycle formed by two acetonitrile units and the metal atom with the OH group attached to one of the nitrogen atoms.  相似文献   

20.
An asymmetric bidentate Schiff-base ligand (2-hydroxybenzyl-2-furylmethyl)imine (L–OH) was prepared. Three complexes derived from L–OH were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of metallic salt. Three complexes, Cu2(L–O?)2Cl2 (1), Ni(L–O?)2 (2) and Co(L–O?)3 (3), have been structurally characterized through elemental analysis, IR, UV spectra and thermogravimetric analysis. Single crystal X-ray diffraction shows metal ions and ligands reacted with different proportions 1?:?1, 1?:?2 and 1?:?3, respectively, so copper(II), nickel(II), and cobalt(III) have different geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号