首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The extraction properties of bisacylated diethylenetriamine are studied in the extraction of palladium(II), platinum(II), and platinum(IV) from hydrochloric acid solutions. Optimum extraction parameters are determined. The extraction of metal ions at these parameters follows an ion-associative mechanism. The concentration constants and thermodynamic parameters of extraction reactions are calculated. The feasibility of the extraction separation of palladium and platinum from base metals is verified.  相似文献   

2.
The recovery of platinum(II) and platinum(IV) chloro complexes from hydrochloric acid and chloride solutions with a new heterochain S,N-containing sorbent, MITKhAT, was studied. The suggested mechanism of formation of platinum(II) mercapto-thio ether complexes in the course of sorption was confirmed by DFT calculations. The results of group and selective recovery of platinum metals with MITKhAT sorbent from simulated and real industrial solutions are reported.  相似文献   

3.
The interaction of palladium(II) and platinum(II) with tin(II) chloride in hydrochloric acid solutions was studied by flow-injection (FI) spectrophotometry. It was found using kinetic measurements in the stopped flow mode that the composition of detected products and the rate of their formation depend on the concentrations of tin(II) and chloride ions in the reaction zone and on the acidity of the solution. Optimal FI conditions were found, and the selectivity of interaction of palladium(II) with tin(II) chloride was estimated for the detection of the signal at 407 nm (yellow form) and 646 nm (green form). It was demonstrated that the reaction of the formation of yellow platinum(IV) complexes is slower than that for palladium(II), especially at rather low concentrations of hydrochloric acid in the reaction flow. Based on the detection of green complexes of palladium(II) with tin(II) chloride, a flow injection method was proposed for the selective spectrophotometric determination of palladium(II) in the presence of other platinum-group metals. The height of the recorded peak is directly proportional to the concentration of palladium(II) in the injected solution in the range of 0.028–0.300 mM. The method was used for the analysis of pharmaceuticals and industrial catalysts.  相似文献   

4.
Sorption concentration of platinum(II, IV) and palladium(II) from freshly prepared and aged two-yearold hydrochloric acid solutions by a series of anion exchangers with different functional groups and of different physical structure of Purolite and CYBBER grades was studied. The high sorption ability of the ion exchangers in relation to the extracted chlorocomplexes of noble metals is shown. It was demonstrated that palladium(II) from all tested ion exchangers can be completely desorbed with thiourea solutions acidified with hydrochloric acid, while complete desorption of platinum is achieved only from Purolite S 985 anion exchanger of the complexforming type and Purolite A 111 weak base anion exchanger.  相似文献   

5.
The recovery of platinum(IV) from hydrochloric acid solutions containing an excess amount ofiron(III) with liquid tri-n-octylamine-1'2-dichloroethane membranes under conditions of galvanostatic dialysiswas studied. The influence exerted by the current density, by the composition of aqueous solutionsand liquid membranes on the rate of platinum(IV) transport and efficiency of separation of the metals wasanalyzed and the optimal process conditions were determined.  相似文献   

6.
The adsorption of palladium(II), rhodium(III), and platinum(IV) from diluted hydrochloric acid solutions onto Fe(3)O(4) nanoparticles has been investigated. The parameters studied include the contact time and the concentrations of metals and other solutes such as H(+) and chloride. The equilibrium time was reached in less than 20 min for all metals. The maximum loading capacity of Fe(3)O(4) nanoparticles for Pd(II), Rh(III), and Pt(IV) was determined to be 0.103, 0.149, and 0.068 mmol g(-1), respectively. A sorption mechanism for Pd(II), Rh(III), and Pt(IV) has been proposed and their conditional adsorption equilibrium constants have been determined to be logK=1.72, 1.69, and 1.84, respectively. Different compositions of eluting solution were tested for the recovery of Pt(IV), Pd(II), and Rh(III) from Fe(3)O(4) nanoparticles. It was found that 0.5 mol L(-1) HNO(3) can elute all of the metal ions simultaneously, while 1 mol L(-1) NaHSO(3) was an effective eluting solution for Rh(III), and 0.5 mol L(-1) NaClO(4) for Pt(IV). In competitive adsorption, the nanoparticles showed stronger affinity for Rh(III) than for Pd(II) and Pt(IV).  相似文献   

7.
A procedure was developed for recovery and concentration of residual palladium(II) from a “lean” refining solution by extraction with 1Н-1,2,4-triazole derivatives. Palladium(II) is extracted quantitatively from 1 M hydrochloric acid solutions and under optimum conditions is selectively separated from platinum(IV) and rhodium(III).  相似文献   

8.
A procedure was developed for recovery and concentration of residual palladium(II) from a “lean” refining solution by extraction with 1Н-1,2,4-triazole derivatives. Palladium(II) is extracted quantitatively from 1 M hydrochloric acid solutions and under optimum conditions is selectively separated from platinum(IV) and rhodium(III).  相似文献   

9.
The adsorption and desorption behaviors of gold (III), palladium (II) and platinum (IV) were surveyed in column chromatographic systems consisting of one of the conventional anion-exchange resins of large ion-exchange capacity and dilute thiourea solutions. The noble metals were strongly adsorbed on the anion-exchange resins from dilute hydrochloric acid, while most base metals did not show any marked adsorbability. These facts made it possible to separate the noble metals from a large quantity of base metals such as Ag (I), Al (III), Co (II), Cu (II), ¶Fe (III), Mn (II), Ni (II), Pb (II), and Zn (II). Although it used to be very difficult to desorb the noble metals from the resins used, the difficulty was easily overcome by use of dilute thiourea solutions as an eluant. In the present study, as little as 1.00 μg of the respective noble metals was quantitatively separated and recovered from as much as ca. 10 mg of a number of metals on a small column by elution with a small amount of dilute thiourea solution. The present systems should be applicable to the separation, concentration and recovery of traces of the noble metals from a number of base metals coexisting in a more extended range of amounts and ratios.  相似文献   

10.
Extraction of palladium(II) and platinum(IV) from acidic chloride solutions with solutions of 3,7-dimethyl-5-thianonane-2,8-dione in toluene and chloroform and complexation of this reagent with platinum metals in aqueous acetone were studied by 1Hand 13C NMR and IR spectroscopy. The possibility of extractive separation of palladium(II) from platinum(IV) and their separation from Cu(II), Ni(II), Co(II), Mn(II) and Fe(III) with solutions of 3,7-dimethyl-5-thianonane-2,8-dione in organic solvents was studied. The apparent concentration constants of extraction of palladium(II) and platinum(VI) with 3,7-dimethyl-5-thianonane-2,8-dione and the corresponding thermodynamic parameters were determined.  相似文献   

11.
A micellar solution of cetylpyridinium chloride (CPC) can separate into two phases due to a temperature change or to the addition of salts. Platinum(II), (IV) and palladium(II) reacted with chloride ions to form stable anionic complexes of PtCl4(2-), PtCl6(2-) and PdCl4(2-), respectively, and were adsorbed onto the CPC gel phase. The CPC phase plays the role of an ion-exchange adsorbent for the anionic complexes. By such a procedure, the precious metals of platinum and palladium could be separated from base metals such as copper, zinc and iron. The kinetic separation was performed by a ligand exchange reaction of the palladium(II) chloro-complex with EDTA at 60 degrees C. The anionic palladium(II)-EDTA complex could not bind the opposite charged CP+ and was desorbed from the CPC phase. In the aqueous phase, the recovery of palladium(II) by the double-desorption was 101.1 +/- 1.2%. The platinum(II) and (IV) chloro-complexes were stable for at least 30 min and remained in the CPC phase.  相似文献   

12.
He XC 《Talanta》1991,38(3):319-323
The ion flotation of rhodium(III) and palladium(II) with some anionic surfactants has been investigated. Two flotation procedures are proposed for the separation of some platinum metals, based on differences in the kinetic properties of the chloro-complexes of rhodium(III), palladium(II) and platinum(IV). The first involves the selective flotation of Rh(H(2)O)(3+)(6) from PdCl(2-)(4) and PtCl(2-)(6) in dilute hydrochloric acid with sodium dodecylbenzenesulfonate (SDBS). After precipitation of the hydroxide and redissolution in dilute acid, the Rh(III) is converted into Rh(H(2)O)(3+)(6), Pd(II) and Pt(IV) remaining as PdCl(2-)(4) and PtCl(2-)(6) respectively, and separation is achieved by floating the Rh(H(2)O)(3+)(6) with SDBS. The second is for separation of Pd(II). Prior to flotation, the solution of PdCl(2-)(4) and PtCl(2-)(6) is heated with ammonium acetate to convert PdCl(2-)(4) into Pd(NH(3))(2+)(4). The chloro-complex of Pt(IV) is unaffected. The complex cation, Pd(NH(3))(2+)(4), is then selectively floated with SDBS. The procedures are fast, simple and do not require expensive reagents and apparatus.  相似文献   

13.
The adsorption and desorption behaviors of gold (III), palladium (II) and platinum (IV) were surveyed in column chromatographic systems consisting of one of the conventional anion-exchange resins of large ion-exchange capacity and dilute thiourea solutions. The noble metals were strongly adsorbed on the anion-exchange resins from dilute hydrochloric acid, while most base metals did not show any marked adsorbability. These facts made it possible to separate the noble metals from a large quantity of base metals such as Ag (I), Al (III), Co (II), Cu (II), Fe (III), Mn (II), Ni (II), Pb (II), and Zn (II). Although it used to be very difficult to desorb the noble metals from the resins used, the difficulty was easily overcome by use of dilute thiourea solutions as an eluant. In the present study, as little as 1.00 microg of the respective noble metals was quantitatively separated and recovered from as much as ca. 10 mg of a number of metals on a small column by elution with a small amount of dilute thiourea solution. The present systems should be applicable to the separation, concentration and recovery of traces of the noble metals from a number of base metals coexisting in a more extended range of amounts and ratios.  相似文献   

14.
The extraction of gold(III), palladium(II), and platinum(IV) with 1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole from hydrochloric acid solutions into toluene has been studied. The extraction follows the anion-exchange mechanism. The concentration constants and thermodynamic parameters of the extraction reaction have been calculated. The reagent is proposed for use in the extraction of the sum of precious metals.  相似文献   

15.
Differences in the ion flotation properties of palladium(II) and platinum(IV) chloro complexes in aqueous solutions are used to achieve separations of these metals. The anionic chloro complex PtCl2-6 is floated selectively with cationic surfactants of the type, RNR'3Br, from solutions of PdCl2-4 and various concentrations of hydrochloric acid. The palladium(II) does not float from solutions of ? 3.0 M HCl and the platinum(IV) floated from these solutions can be recovered free of palladium. However, the separation is incomplete as much of the platinum(IV) is also unfloated from these solutions. Quantitative separations are obtained by conversion of the palladium(II) to the cationic ammine, Pd(NH3)42+ with aqueous ammonia prior to flotation. The anionic chloro complex of platinum(IV) is unaffected by the presence of ammonia and is floated quantitatively with the surfactant n-hexadecyltri-n-propylammonium bromide from 0.01 M ammonia solutions.  相似文献   

16.
Mirza MY 《Talanta》1980,27(2):101-106
The extraction of Pd(II), Rh(III), Ir(III), Au(III) and Pt(IV) from hydrochloric and hydrobromic acid with 5% tri-iso-octylamine solution in carbon tetrachloride has been studied. The gold extract from hydrochloric acid is yellow and absorbs at 325 nm, the palladium compound is red and absorbs at 290 nm and 467 nm, and the platinum compound is blood-red and shows absorption at 268 nm. The gold, palladium and platinum extracts from hydrobromic acid are crimson. reddish brown and blood-red, with maximum absorption at 260, 345 and 300 nm respectively. Methods have been devised for the separation of gold from platinum and for its determination and also for the simultaneous determination of palladium and platinum.  相似文献   

17.
The extraction properties of (RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)-pentan-3-ol (with chloroform as a diluent) with respect to palladium(II) were studied. Palladium(II) was found to be efficiently extracted by the reagent from 0.1–6 M HCl solutions by the coordination mechanism. The rate of palladium(II) recovery depends on the hydrochloric acid and chloride ion concentrations in the aqueous phase. Conditions for the selective separation of palladium(II) and copper(II) from nickel(II), cobalt(II), and iron(III) were determined.  相似文献   

18.
Specific features of sorption recovery of palladium(II) and rhodium(III) chloride complexes from hydrochloric acid and chloride solutions with MITKhAT S,N-containing sorbent were revealed. The kinetic and capacity characteristics of the sorbent were determined in relation to the solution composition and kind of the metal. The most probable mechanism of sorption recovery and the composition of the forming Pd(II) and Rh(III) complexes were suggested.  相似文献   

19.
A simple and rapid method for the analysis of trace amounts of gold(III), palladium(II), and platinum(IV) by the combined use of graphite furnace atomic absorption spectrometry and anion-exchange separation was proposed, and successfully applied to the rapid determination of metals in industrial waste solutions obtained from the final process of noble-metal recovery factories, because noble metals can be selectively and quantitatively separated to a high degree by using a small column containing only a 0.7 g-portion of a common anion-exchange resin and a dilute thiourea solution.  相似文献   

20.
Lyle SJ  Maghzian R 《Talanta》1969,16(12):1535-1543
A study has been made of some aspects of the co-precipitation of gold and platinum(II) and (IV) with palladium(II) precipitated from homogeneous solution initially containing biacetyl and hydroxylamine in 0.3M hydrochloric acid. The co-precipitation of nickel(II) with palladium(II) and vice versa from near neutral solutions initially containing biacetyl and hydroxylamine was also explored; the solid is enriched in the minor constituent in both cases. As with biacetyl monoxime-hydroxylamine systems, both nickel(II) and palladium(II) promote formation of dimethylglyoxime from such solutions between pH 7 and 8. Factors leading to this unusual behaviour in co-precipitation are discussed and a qualitative explanation tentatively advanced. The co-precipitation of nickel and palladium(II) is different when biacetyl monoxime solutions are used; the former comes out of solution faster than the latter irrespective of their concentration ratio. This disparity in the reaction rates can be used to separate nickel directly from palladium(II) by precipitation or extraction of the dimethylglyoximate into chloroform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号