首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
The synthesis of 6-alkyl and 5,6-dialkyl-2-methoxy-4(3H)-pyrimidinones 3 is described. Their versatility to be transformed into 6-alkyl and 5,6-dialkyluracils 4(a-h), 6-alkyl and 5,6-dialkyl-3-methyluracils 7(a,e,f) and 6-alkyl and 5,6-dialkyl-2-alkoxy-4(3H)-pyrimidinones 5(a-i) is also shown.  相似文献   

2.
Reaction of N-(p-methoxybenzoyl)-S-benzoylsulphenamide1 with [Os3(CO)10(MeCN)2] at room temperature gives Os3(CO)10(μ3-S)]2 and [Os6(CO)20(μ4-S)(MeCN)]3 in moderate yield. The crystal structure of 3 has been determined. Complex 2 is an intermediate in the formation of 3. Complex 3 undergoes dissociation of CO to give [Os6(CO)19(μ3-S)] and [Os5(CO)15(μ4-S)].  相似文献   

3.
In an attempt to find a new class of antimicrobial agents, a series 2-pyridinone and 2-iminochromene derivatives containing Lidocaine analogue were designed and synthesized. The 2-pyridinone derivatives (3), (4), and (6) were obtained through the cyclocondensation of 2-cyano-N-(2,6-dimethylphenyl)-acetamide (2) with 1,3-dicarbonyl compounds and/or ternary condensation of (2), aromatic aldehyde, and malononitrile. Also, a series of 2-iminochromene derivatives (79) were synthesized through the condensation reaction of cyanoacetamide derivative (2) with salicylaldehyde derivatives. The structure of the new compounds were confirmed based on elemental analysis and spectral data. These compounds were screened for their antibacterial and antifungal activity The minimal inhibitory concentration (MIC) (µg/mL) of the most active (4), (5b), and (8) derivatives were determined. The MIC values between 7.81 and 31.26 µg/mL against bacterial species for (8) derivative, and upon comparison to tetracycline exhibited a positive control MIC (31.26–62.6 µg/mL). Besides, the activity against C. albicans (ATCC 1023) showed a MIC value of 15.63 µg/mL, which is similar to that of Amphotericin B.  相似文献   

4.
The thermal decomposition of sodium 3-oxa-11-chloro-eicosafluoroundecane sulfinate (1) and potassium 3-oxa-11-chloroeicosafluoroundecane sulfonate (2) were studied. 7-Chlorotridecafluoroheptene-1 (3), 1-hydro-7-chloro-tetradecafluoroheptane (4), 1-hydro-3-oxa-11-chloro-eicosafluoroundecane (5), methyl 8-chloro-tetradecafluorooctanate (6), and methyl 3-oxa-11 - chloro - octadecafluoroundecanate (7) were isolated and characterized when compound 1 was pyrolyzed and then reacted with methanol. However, only 8-chloro-tetradecafluorooctanoic acid and its methyl ester were obtained in high yield when compound 2 was subjected to pyrolysis. A possible mechanism was proposed.  相似文献   

5.
The synthesis of the benz[a]anthraquinone natural products X-14881 C (1c) and ochromycinone (1a) via an aromatic directed metalation strategy (Scheme 1) is described.  相似文献   

6.
The mono-bipyridine bis carbonyl complex [Ru(bpy)(CO)2Cl2] exists in two stereoisomeric forms having a trans(Cl)/cis(CO) (1) and cis(Cl)/cis(CO) (2) configuration. In previous work we reported that only the trans(Cl)/cis(CO) isomer 1 leads by a two-electron reduction to the formation of [Ru(bpy)(CO)2]n polymeric film on an electrode surface. This initial statement was overstated, as both isomers allowed the build up of polymers. A detailed comparison of the electropolymerization of both isomers is reported here, as well as the reduction into dimers of parent stereoisomer [Ru(bpy)(CO)2(C(O)OMe)Cl] complexes 3 and 4 obtained as side products during the synthesis of 1 and 2.  相似文献   

7.
Me3NO activation of the tetrairidium cluster Ir4(CO)12 (1) in presence of the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) furnishes the bpcd-substituted clusters Ir4(CO)10(bpcd) (3) and Ir4(CO)8(bpcd)2 (4) as the minor and major products, respectively. Cluster 3 has been isolated as the sole observable product from the reaction of [Ir4(CO)11Br][Et4N] (2) with bpcd in presence of AgBF4 at room temperature. Both 3 and 4 have been isolated and fully characterized in solution by spectroscopic methods. The solid-state structure of 3 reveals that the ancillary bpcd ligand is bound to a single iridium center, with chelating and bridging bpcd ligands found in the X-ray structure of cluster 4. Cluster 4 is unstable at room temperature and slowly loses CO to afford the hydride-bridged cluster HIr4(CO)4(μ-CO)3(bpcd)[μ-PhP(C6H4)CC(PPh2)C(O)CH2C(O)] (5). Cluster 5 has been fully characterized in solution by IR and NMR spectroscopies, and the C–H bond activation attendant in the ortho metalation step is shown to occur regioselectively at one of the aryl groups associated with the bridging bpcd ligand. The redox properties of clusters 35 have been explored and the electrochemical behavior discussed with respect to extended Hückel MO calculations and related diphosphine-substituted cluster compounds prepared by our groups.  相似文献   

8.
Acetone cyanohydrin (1) yields on acylation and ring closure with anhydrides and perchloric acid. 2-oxazolin-4-onium perchlorates 5a, 5c or 5d. The same perchlorates (5a, 5b) may be obtained under similar conditions from acyloxy-nitriles (2) or -amides (4). Perchlorates 5 may be deprotonated in pyridine to 2-oxazolin-4-ones (6), but in aqueous solution they undergo ring opening to acyloxy-amides 4a.c.d. or to N-benzoyl-α-hydroxy-isobutyramide 7b.  相似文献   

9.
A chiral carbohydrate ligand 3,4,6-tri-O-benzyl-d-glucal (L) reacts with the cluster triruthenium dodecacarbonyl Ru3(CO)12 giving a novel chiral cluster Ru3(μ-H)2(CO)9(L-2H) (I) that shows fluxional behavior at room temperature. The reaction of Ru3(μ-H)2(CO)9(L-2H) (I) with triphenylphosphine and diphenylphosphinoethane (dppe) gives two new clusters Ru3(μ-H)2(CO)7(L-2H)(PPh3)2 (II) and Ru3(μ-H)2(CO)7(L-2H)(dppe) (III). The new compounds I, II and III have been characterized by a combination of elemental analysis, mass spectrometry, infrared and variable temperature NMR spectroscopy.  相似文献   

10.
《Polyhedron》2001,20(22-23):2771-2780
The diphosphine clusters Ru3(CO)10(dcpm) (1) and Ru3(CO)10(F-dppe) (2) as well as the bis(diphosphine) clusters Ru3(CO)8(dcpm)2 (3) and Ru3(CO)8(F-dppe)2 (4) have been synthesised from Ru3(CO)12 and the bulky diphosphines 1,2-bis[bis(pentafluorophenyl)phosphino]ethane (F-dppe) and bis(dicyclohexylphosphino)methane (dcpm). While the single-crystal X-ray structure analyses of 1, 2 and 3 show the expected μ22 coordination of the diphosphine ligands, that of 4 reveals an unusual structure with one μ22-diphosphine and one μ12-diphosphine ligand. The clusters 14 catalyse the hydroformylation of ethylene and propylene to give the corresponding aldehydes, 2 showing higher activities than those observed for Ru3(CO)12 and Ru3(CO)10(dppe).  相似文献   

11.
An apparatus is described which enables the gas evolution analysis(GEA) and mass spectrometric analysis(MSA) curves of a sample to be recorded simultaneously. The sample is pyrolyzed in a chamber in a dynamic helium atmosphere.The evolved products are detected in the helium gas by a thermal conductivity cell which results in the (GEA) curve. An inexpensive mass spectrometer is used to moniter the helium gas stream which gives the (MSA)curve. The advantages of the appparatus over other recent techniques are given.  相似文献   

12.
Yang Fan  Phillip E. Fanwick  Tong Ren   《Polyhedron》2009,28(16):3654-3658
4-Vinylbenzoic acid reacted with Ru2(D(3,5-Cl2Ph)F)3(OAc)Cl and cis-Ru2(D(3,5-Cl2Ph)F)2(OAc)2Cl (D(3,5-Cl2Ph)F is N,N-bis(3,5-dichlorophenyl)formamidinate) to yield Ru2(D(3,5-Cl2Ph)F)3(4-vinylbenzoate)Cl (1) and cis-Ru2(D(3,5-Cl2Ph)F)2(4-vinylbenzoate)2Cl (2), respectively. Ru2(D(3,5-Cl2Ph)F)3(OAc)Cl reacted with 5-hexenoic acid and 6-heptenoic acid to afford Ru2(D(3,5-Cl2Ph)F)3(5-hexenoate)Cl (3) and Ru2(D(3,5-Cl2Ph)F)3(6-heptenoate)Cl (4), respectively. All new compounds were characterized using voltammetric and Vis–NIR spectroscopic techniques, and the structures of 1 and 2 were also established through X-ray single crystal diffractions.  相似文献   

13.
The aza-allyl complex (ketene imine)Fe2(CO)6 (3a) reacts with phosphanes PR3 to give substitution products of the type (ketene imine)Fe2(CO)5PR3 (4a,b). In addition, the phosphane PMe3 yields a ferrole complex (5). Phosphites react with complex 3a to form mono- and di-substitution products (ketene imine)- Fe2(CO)5P(OR)3 (4c,d) and (ketene imine)Fe2(CO)4(P(OR)3)2 (6). Diphosphanes yield substituted complexes of type (ketene imine)Fe2(CO)4(μ-Ph2P PPh2) (7). The structures of (ketene imine)Fe2(CO)5PMe3 (4a), the ferrole complex 5, and (ketene imine)Fe2(CO)4(ν-Ph2PCH2CH2PPh2) (7b) were determined by X-ray analysis.  相似文献   

14.
《Polyhedron》2003,22(14-17):2267-2271
The synthesis and structural characterization of the two new Mn complexes [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) and [Mn21O16(O2CMe)16(hmp)6(hmpH)2(pic)2(py)(H2O)](ClO4)4 (3) are presented, together with a detailed study of their magnetic properties. Complex 1 possesses a ground-state spin of S=13, and the ground-state spin for 3 is estimated to be S=17/2 or 19/2. Both complexes 1 and 3 are new examples of single-molecule magnets (SMMs), displaying frequency-dependent out-of-phase AC signals, as well as magnetization vs. DC field hysteresis at temperatures below 1 K. Complex 1 straddles the classical/quantum interface by also displaying quantum tunneling of the magnetization (QTM).  相似文献   

15.
《Polyhedron》2001,20(15-16):2011-2018
The reaction behavior of the 48e-clusters [Ru3(CO)8(μ-H)2(μ-PR2)2] (R=But, 1a; R=Cy, 1b) towards phosphine ligands has been studied. Whereas 1a reacts spontaneously with many phosphines at room temperature, a lack of reactivity for 1b under similar conditions is observed. Thus 1a reacts with dppm (Ph2PCH2PPh2) to the known 46e-cluster [Ru3(μ-CO)(CO)43-H)(μ-H)(μ-PBut2)2(μ-dppm)] (2a), and the reaction of 1a with dppe (Ph2PC2H4PPh2) yields analogously [Ru3(μ-CO)(CO)43-H)(μ-H)(μ-PBut2)2(μ-dppe)] (3). Reactions of 1a with dmpm (Me2PCH2PMe2), dmpe (Me2PC2H4PMe2) and PBun3, respectively, gave in each case a mixture of products which could not be characterized. Contrary to the reaction behavior at room temperature, 1b reacts with phosphines in THF under reflux yielding the novel complexes [Ru3(CO)6(μ-H)2(μ-PCy2)2L2] (L=Cy2PH, 4a; L=But2PH, 4b; L=Ph2PH, 4c; L=P(OEt)3, 4d). 4a is also obtained directly by the reaction of [Ru3(CO)12] with an excess of Cy2PH. The molecular structure of 4a has been determined by a single-crystal X-ray analysis. Moreover, the thermolysis of 1a in octane affords [Ru3(CO)8(μ-H)23-PBut)(But2PH)] (6) as the main product, and the thermolysis of [Ru3(CO)9(But2PH)(μ-dppm)] (7) yields 2a to a considerable extent. Treatment of 1a with carbon tetrachloride leads to [Ru3(CO)7(μ-H)(μ-PBut2)2(μ-Cl)] (8) as the main product.  相似文献   

16.
The aim of this study was to synthesize novel enaminonitrile derivatives starting from 2-aminobenzimidazole and utilize this derivative for the preparation of novel heterocyclic compounds and assess their function for biological activity screening. The key precursor N-(1H-benzo[d]imidazol-2-yl)carbonohydrazonoyl dicyanide (2) was prepared in pyridine by coupling of diazotized 2-aminobenzimidazole (1) with malononitrile. Compound 2 was subjected to react with various secondary amines such as piperidine, morpholine, piperazine, diphenylamine, N-methylglucamine, and diethanolamine in boiling ethanol to give the acrylonitriles (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(piperidin-1-yl)acrylonitrile (3), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-morpholinoacrylonitrile (4), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(piperazin-1-yl)acrylonitrile (5), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(diphenylamino)acrylonitrile (6), (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(methyl((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)amino)acrylonitrile (7), and (2Z)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-3-amino-3-(bis(2-hydroxyethyl)amino)acrylonitrile (8), respectively. It has been found that the behaviour of nitrile derivative 2 towards hydrazine hydrate to the creation of 4-((1H-benzo[d]imidazol-2-yl)diazenyl)-1H-pyrazole-3,5-diamine (9). The reaction of malononitrile with compound 2 in an ethanolic solution catalyzed with sodium ethoxide afforded 4-amino-1-(1H-benzo[d]imidazol-2-yl)-6-imino-1,6-dihydropyridazine-3,5-dicarbonitrile (11). Moreover, malononitrile reacted with 7 in a boiling ethanolic sodium ethoxide solution to give 2-(5-((1H-benzo[d]imidazol-2-yl)diazenyl)-4-amino-6-(methyl((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)amino)pyrimidin-2-yl)acetonitrile (14). Heating 7 in boiling acetic anhydride and pyridine afforded (2R,3R,4R,5S)-6-(((1E)-2-((1-acetyl-1H-benzo[d]imidazol-2-yl)diazenyl)-1-(N-acetylacetamido)-2-cyanovinyl)(methyl)amino)hexane-1,2,3,4,5-pentayl pentaacetate (15). When compound 15 is heated for a long time in refluxing DMF including a catalytic of TEA, cyclization occurs to give the corresponding (2R,3R,4R,5S)-6-((1-acetyl-3-((1-acetyl-1H-benzo[d]imidazol-2-yl)diazenyl)-4-amino-6-oxo-1,6-dihydropyridin-2-yl)(methyl)amino)hexane-1,2,3,4,5-pentayl pentaacetate (16). In addition, triethyl orthoformate was reacted with compound 7 in the presence of acetic anhydride to afford the corresponding ethoxymethyleneamino derivative (2R,3R,4R,5S)-6-(((1E)-2-((1-acetyl-1H-benzo[d]imidazol-2-yl)diazenyl)-2-cyano-1-(((E) ethoxymethylene)amino)vinyl)(methyl)amino)hexane-1,2,3,4,5-pentayl pentaacetate (17). Also, it has been found that heating a mixture of 7 with DMF/DMA in anhydrous xylene yielded compound (1E)-N'-((1E)-2-((1H-benzo[d]imidazol-2-yl)diazenyl)-2-cyano-1-(methyl((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)amino)vinyl)-N,N-dimethylformimidamide (18). In addition, compound 7, when reacted with several acid anhydrides, allowed the matching phthalimide derivatives 1926. The results showed that compound 14 has significantly higher ABTS and antitumor activities than the other compounds. Molecular modelling was also studied for compounds 22 and 24. The viability of four many cell lines—the African green monkey kidney epithelial cells (VERO), human breast adenocarcinoma cell line (MCF-7), human lung fibroblast cell line (WI-38), and human hepatocellular liver carcinoma cell line (HepG2) was examined to determine the antitumor activities of the newly synthesized compounds. Also, it was found that compounds 9, 11, 15, 16, 22, 23, 24 and 25 are strong against HepG2 cell lines, while 16, 22, and 25 are strong against WI-38 cell lines. Moreover, it was also found that compounds 16 and 22 are strong against VERO cell lines. On the other hand, compounds 7, 14, 15, 16, and 22 are strong while the rest of the other compounds are moderate against the MCF-7 cell line. The result of docking showed that compound 24 got stabilized inside the pocket with a very promising binding score of ? 8.12 through hydrogen bonds with Arg184 and Lys179, respectively.  相似文献   

17.
Ru4(CO)12(C6H6O) (1) and Ru3(CO)10(C6H8O) (2) have been obtained from the reaction of Ru3(CO)12 with cyclohex-1-en-2-one; 1 has been characterized by an X-ray structure determination. Both 1 and 2 have been found to be active precatalysts for the transfer hydrogenation of cyclohex-1-en-2-one.  相似文献   

18.
Reaction of Co(NO3)26H2O with the multidentate ligands benzene-1,3,5-tricarboxylate (btc) and the flexible bipyridyl ligand 1,2-bis(4-pyridyl)ethane (bpe) affords the 3-dimensional coordination polymers [Co3(btc)2(bpe)3(eg)2](guests) 1, where eg = ethylene glycol, and [Co2(Hbtc)2(bpe)2](bpe) 2. Both phases are comprised of infinite metal-carboxylate dimer chains, linked into 2-dimensional sheets by the bpe ligands. These sheets are further linked to adjacent sheets through covalent interactions, 1, or through hydrogen-bonding interactions, 2, to yield the 3-dimensional structures. Phase 1 exhibits solvent filled 1-dimensional pores, whereas 2 is triply-interpenetrated to form a dense solid array.  相似文献   

19.
[TiCl2(salen)] (1) reacts with AlMe3 (1:2) to give the heterometallic Ti(III) and Ti(IV) complexes [Ti{(μ-Cl)(AlMe2)}{(μ-Cl)(AlMe2X)}(salen)] (X=Me or Cl) (2) and [TiMe{(μ-Cl)(AlCl2Me)}(salen)] (3). Addition of diethyl ether to 3 affords [Ti(Me)Cl(salen)] (4). The analogous reaction of [TiBr2(salen)] (5) gives the crystallographically characterised [Ti{(μ-Br)(AlMe2)}{(μ-Br)(AlMe2X)}(salen)] (X=Me or Br) (6) and [Ti(Me)Br(salen)] (7) in a single step, whilst the comparable reaction of [TiCl2{(3-MeO)2salen}] (8) with AlMe3 yields [Ti(Me)Cl{(3-MeO)2salen}] (9) with no evidence of titanium(III) species. Reactivity of both halide and methyl groups of 4 has been probed using magnesium reduction, SbCl5 and AgBF4 halide abstraction and SO2 insertion reactions. Hydrolysis of [Ti(Me)X(L)] complexes affords μ-oxo species [TiX(L)]2(μ-O) [X=Cl, L=salen (13); X=Br, L=salen (14); X=Cl, L=(3-MeO)2salen (15)].  相似文献   

20.
The reaction of R3M (M=Ga, In) with HESiR′3 (E=O, S; R′3=Ph3, iPr3, Et3, tBuMe2) leads to the formation of (Me2GaOSiPh3)2 (1); (Me2GaOSitBuMe2)2 (2); (Me2GaOSiEt3)2 (3); (Me2InOSiPh3)2 (4); (Me2InOSitBuMe2)2 (5); (Me2InOSiEt3)2 (6); (Me2GaSSiPh3)2 (7); (Et2GaSSiPh3)2 (8); (Me2GaSSiiPr3)2 (9); (Et2GaSSiiPr3)2 (10); (Me2InSSiPh3)3 (11); (Me2InSSiiPr3)n (12), in high yields at room temperature. The compounds have been characterized by multinuclear NMR and in most cases by X-ray crystallography. The molecular structures of (1), (4), (7) and (8) have been determined. Compounds (3), (6) and (10) are liquids at room temperature. In the solid state, (1), (4), (7) and (9) are dimers with central core of the dimer being composed of a M2E2 four-membered ring. VT-NMR studies of (7) show facile redistribution between four- and six-membered rings in solution. The thermal decomposition of (1)(12) was examined by TGA and range from 200 to 350°C. Bulk pyrolysis of (1) and (2) led to the formation of Ga2O3; (4) and (5) In metal; (7)(10) GaS and (11)(12) InS powders, respectively.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号