首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of the present work was to synthesize mononuclear ruthenium complex [RuCl2(CO)2{Te(CH2SiMe3)2}2] (1) by the reaction of Te(CH2SiMe3)2 and [RuCl2(CO)3]2. However, the stoichiometric reaction affords a mixture of 1 and [RuCl2(CO){Te(CH2SiMe3)2}3] (2). The X-ray structures show the formation of the cis(Cl), cis(C), trans(Te) isomer of 1 and the cis(Cl), mer(Te) isomer of 2. The 125Te NMR spectra of the complexes are reported. The complex distribution depends on the initial molar ratio of the reactants. With an excess of [RuCl2(CO)3]2 only 1 is formed. In addition to the stoichiometric reaction, a mixture of 1 and 2 is observed even when using an excess of Te(CH2SiMe3)2. Complex 1 is, however, always the main product. In these cases the 125Te NMR spectra of the reaction solution also indicates the presence of unreacted ligand.  相似文献   

2.
The dissolution of DyI2 in diamine Me2N(CH2)3NH2 (DMDA) is accompanied by the disproportionation of the salt, hydrogen evolution, and oxidation of DyII to DyIII. The [Dy(DMDA)8]I3 complex (1) was isolated from the solution. The neodymium amide amine complex (PriNH)NdI2(IPA)4 was produced by the reaction of NdI2 with isopropylamine (IPA). The recrystallization of this complex from IPA afforded the NdI3(IPA)4 complex (2). The recrystallization of (PriNH)NdI2(IPA)4 from a toluene-IPA mixture gave the complex with five amine ligands, NdI3(IPA)5 (3). The structures of compounds 1, 2, and 3 were established by X-ray diffraction. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1674–1679, September, 2007.  相似文献   

3.
The singlet-triplet separations for the edge-sharing bioctahedral (ESBO) complex W2(μ-H)(μ-Cl)(Cl4(μ-dppm)2 · (THF)3 (II) has been studied by 31P NMR spectroscopy. The structural characterization of [W2(μ-H)2(μ-O2CC6H5)2Cl2(P(C6H5)3)2] (I) by single-crystal X-ray crystallography has allowed the comparison of the energy of the HOMOLUMO separation determined using the Fenske-Hall method for a series of ESBO complexes with two hydride bridging atoms, two chloride bridging atoms and the mixed case with a chloride and hydride bridging atom. The complex representing the mixed case, [W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 · (THF)3] (II), has been synthesized and the value of −2J determined from variable-temperature 31P NMR spectroscopy.  相似文献   

4.
Treatment of the vanadium(II) tetrahydroborate complex trans-V(η1-BH4)2(dmpe)2 with (trimethylsilyl) methyllithium gives the new vanadium(II) alkyl cis-V(CH2SiMe3)2(dmpe)2, where dmpe is the chelating diphosphine 1,2-bis(dimethylphosphino)ethane. Interestingly, this complex could not be prepared from the chloride starting material VCl2(dmpe)2. The CH2SiMe3 complex has a magnetic moment of 3.8 μB, and has been characterized by 1H NMR and EPR spectroscopy. The cis geometry of the CH2SiMe3 complex is somewhat unexpected, but in fact the structure can be rationalized on steric grounds. The X-ray crystal structure of cis-V(CH2SiMe3)2(dmpe)2 is described along with that of the related vanadium(II) alkyl complex trans-VMe2(dmpe)2. Comparisons of the bond distances and angles for VMe2(dmpe) 2, V---C = 2.310(5) Å, V---P = 2.455(5) Å, and P---V---P = 83.5(2)° with those of V(CH2SiMe3)2(dmpe)2, V---C = 2.253(3) Å, V---P = 2.551(1) Å, and P ---V---P = 79.37(3)° show differences due to the differing trans influences of alkyl and phosphine ligands, and due to steric crowding in latter molecule. The V---P bond distances also suggest that metal-phosphorus π-back bonding is important in these early transition metal systems. Crystal data for VMe2(dmpe)2 at 25°C: space group P21/n, with a = 9.041(1) Å, b = 12.815(2) Å, c = 9.905(2) Å, β = 93.20(1)°, V = 1145.8(5) Å3, Z = 2, RF = 0.106, and RwF =0.127 for 74 variables and 728 data for which I 2.58 σ(I); crystal data for V(CH2SiMe3)2(dmpe)2 at −75°C: space group C2/c, with a = 9.652(4) Å, b = 17.958(5) Å, c = 18.524(4) Å, β = 102.07(3)°, V= 3140(3) Å3, Z = 4, RF = 0.033, and RwF = 0.032 for 231 variables and 1946 data for which I 2.58 σ(I).  相似文献   

5.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

6.
The complex Os3(CO)92-H)23-S) reacts with KOH/MeOH to produce the anionic complex [Os3(CO)92-H)(μ3-S)?, which reacts in turn with RO+ (R = Me, Et) to form HOs3(CO)9SR. This complex is especially reactive towards ligands L (L = C2H4, CO, PR3 and MeCN) to generate complexes of the type Os3(CO)92-H)(μ2-SR)(L). At 125°C the complex Os3(CO)92-H)(μ2-SR)(C2H4) (in the presence of C2H4) ejects RH and CO to form Os3(CO)82-H)?(μ3-S)(CHCH2). The structures of the new complexes are described and the probable reaction pathways discussed.  相似文献   

7.
Thermal degradation of the cluster compound Os3(CO)8(PPh2H)(μ3-S)2 (I) at 125°C leads to decarbonylation and formation of the new ligand bridged hexanuclear cluster Os6(CO)14(μ-PPh2)23-S)34-S) (II) in 11% yield. Space Group: P1, No. 2, a 10.427(5), b 13.552(3), c 17.919(3) Å, α 84.87(2), β 75.41(3), γ 78.43(3)°, V 2399(2) Å3Z = 2, ?calc 2.82 g cm?3. The structure was solved by the heavy atom method and refined (3223 reflections) to the final residuals R = 0.042 and Rw = 0.036. The molecule consists of two sulfido bridged open triosmium clusters which are linked by a bridging sulfido ligand and a bridging diphenylphosphino ligand.  相似文献   

8.
The new complex Ru3(CO)9(PPh2H)3 (I) was prepared by the direct thermal reaction of Ru3(CO)12 with PPh2 H and was spectroscopically characterized. Irradiation of I with λ ≥ 300 nm leads to the formation of Ru2(μ-PPh2)2(CO)6 (II) and three new phosphido-bridged complexes, Ru3(μ-H)2(μ-PPh2)2(CO)8 (III), Ru3(μ-H)2(μ-PPh2)2(CO)7(PPh2H) (IV) and Ru3(μ-H)(μ-PPh2)3(CO)7 (V). These complexes have been characterized spectroscopically and Ru3 (μ-H)(μ-PPh2)3(CO)7 by a complete single crystal X-ray structure determination. It crystallizes in the space group P21/n with a 20.256(3), b 22.418(6), c 20.433(5) Å, β 112.64(2)°, V 8564(4) Å3, and Z = 8. Diffraction data were collected on a Syntex P21 automated diffractometer using graphite-monochromatized Mo-Kα radiation, and the structure was refined to RF 4.76% and RwF 5.25% for the 8,847 independent reflections with F0 > 6σ(F0). The structure consists of a triangular array of Ru atoms with seven terminal carbonyl ligands, three bridging diphenylphosphido ligands which bridge each of the RuRu bonds, and the hydride ligand which bridges one RuRu bond. Complex IV was also shown to give V upon photolysis and is thus an intermediate in the photoinduced formation of V from I.  相似文献   

9.
利用微波技术合成了配合物[Gd2(Gly)6(H2O)4](ClO4)6(H2O)5, 进行了化学成分分析、红外表征和热重分析. 应用X衍射仪测定其晶体结构, 该晶体为一维链结构, 属三斜晶系, P 空间群, 晶胞参数: a=1.1569(17) nm, b=1.4138(2) nm, c=1.5642(2) nm, α=96.910(2)°, β=102.735(2)°, γ=105.512(2)°, V=2.3606(6) nm3, Z=2, Dc=2.144 g•cm-3. 采用精密溶解-反应量热计, 通过设计热化学循环, 计算出了该配合物的标准摩尔生成焓为 -(7960.73±3.23) kJ•mol-1.  相似文献   

10.
The reaction of M3(CO)12 (M = Ru, Fe) with excess bi-2,7-cyclooctadienyl (C16H22) 1 gave a mononuclear complex M(CO)3(1,2,1′-2′-η4-C16H22), 2a (M = Ru) or 3a (M = Fe), in good yield. Treatment of 2a with Fe3(CO)12 or reaction of 3a with Ru3(CO)12 gave the heterobimetallic complex RuFe(CO)6(C10H22) consisting of a ruthenacyclopentadiene unit coordinated to an Fe(CO)3 fragment, as confirmed by 1H NMR and X-ray studies. The corresponding homobimetallic complex Ru2(CO)6(C16H22) was obtained from the 1:1 reaction of 2a with Ru3(CO)12, while the direct reaction of 1 with Ru3(CO)12 gave Ru2(CO)6(C16H20) preferentially with a loss of two hydrogen atoms. The pathway for formation of these bimetallic complexes was interpreted as a dehydrogenative metallacyclization followed by hydrogen transfer.  相似文献   

11.
用液相反应-前驱物烧结法制备了Cr2(WO4)3和Cr2(MoO4)3粉体。298~1 073 K的原位粉末X射线衍射数据表明Cr2(WO4)3和Cr2(MoO4)3的晶胞体积随温度的升高而增大, 本征线热膨胀系数分别为(1.274±0.003)×10-6 K-1和(1.612±0.003)×10-6 K-1。用热膨胀仪研究了Cr2(WO4)3和Cr2(MoO4)3在静态空气中298~1 073 K范围内热膨胀行为,即开始表现为正热膨胀,随后在相转变点达到最大值,最后表现为负热膨胀,其负热膨胀系数分别为(-7.033±0.014)×10-6 K-1和(-9.282±0.019)×10-6 K-1。  相似文献   

12.
The reported Raman spectrum of the Rb TCNQ salt allows, for the first time, examination of all the vibrational features of the TCNQ ? radical anion. The knowledge of the TCNQ fundamental frequencies as well as of those for neutral TCNQ makes it possible to interpret the infrared and Raman spectra of Cs2 (TCNQ)3 and to conclude that in this salt both neutral and negatively charged TCNQ units are present in the crystal. The result is a first fruitful application of vibrational spectroscopy to the study of complex TCNQ salts, opening the way to an extensive investigation of TCNQ semiconducting salts.  相似文献   

13.
The X-ray crystal structures of (NH4)2(15-crown-5)3[Cu(mnt)2] (1) and (NH4)2(benzo-15-crown-5)4- [Cu(mnt)2]·0.5H2O (2) were determined. Two single crystals are composed of distinct structures of ammonium-crown ether supramolecular cation and [Cu(mnt)2]2- anion. The triple-decker dication in complex 1 and a sandwich dimmer in complex 2 were observed. X-Band EPR studies on the single crystals of both complex 1 and complex 2 have been carried out at room temperature, which revealed that complex 2 showed a perfect hyperfine structure of Cu whereas that of complex 1 could not be observed. The principal values and direction cosines of the principal axes of the g and A tensors were computed by a least-squares fitting procedure. The spin density of Cu(Ⅱ) was estimated according to the principal values of the A tensors and compared well with the results calculated based on DFT method.  相似文献   

14.
The reaction of Ru3(CO)12 with but-2-yn-1,4-diol (HOCH2CCCH2OH, BUD) in CH3OH/KOH followed by acidification with HCl leads to four products, one of which has been identified as the title complex (μ-Cl)Ru3(CO)934-H2CCC(H)CH2]. This is an open cluster containing a bridging Cl atom on the open side and a C4H5 moiety bound to all the metals. The structure of the complex has been determined by X-ray analysis.The thermal reaction of Ru3(CO)12 with BUD has been revisited for a comparison with the results in alkaline solution. The main product is the allylic derivative HRu3(CO)9[HCCHCCHO].  相似文献   

15.
Syntheses and structure determination of TbIII and ErIII complexes with nitrilotriacetic acids (nta) are reported. Their crystal and molecular structures, molecular formulas, and compositions were determined by single-crystal X-ray structure analyses and elementary analyses, respectively. The crystal of the (NH4)3[TbIII(nta)2(H2O)]·4H2O complex belongs to the monoclinic crystal system and C2/c space group. Crystal data are as follows: a = 16.357(8) Å, b = 8.552(4) Å, c = 17.390(9) Å, β = 104.748(7)°, V = 2352.6(19) Å3, Z = 4, Mr = 675.32, Dc = 1.932 g·cm−3, μ = 3.112 mm−1, and F(000) = 1368. The final R and Rw are 0.0220 and 0.0494 for 2357 (I > 2σ(I)) unique reflections, R and Rw are 0.0266 and 0.0510 for all 5613 reflections, respectively. The TbIIIN2O7 moiety in the [TbIII(nta)2(H2O)]3− complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure, in which the eight coordinate atoms (two N and six O) are from two nta ligands and the water molecule is coordinated to the central TbIII ion directly as the ninth coordinate atom. The crystal of the (NH4)3[ErIII(nta)2] complex belongs to the trigonal crystal system and R-3c space group. Crystal data are as follows: a = 7.9181(16) Å, b = 7.9181(16) Å, c = 54.27(2) Å, γ = 120°, V = 2946.7(14) Å3, Z = 6, Mr = 597.61, D c = 2.021 g·cm−3, μ = 4.345 mm−1, and F(000) = 1770. The final R and Rw are 0.0295 and 0.0673 for 677 (I > 2σ(I)) unique reflections, R and Rw are 0.0366 and 0.0700 for all 4827 reflections, respectively. The ErIIIN2O6 part in the [ErIII(nta)2]3− complex anion is an eight-coordinate structure with a pseudo-dicapped octahedron, in which the eight coordinate atoms (two N and six O) are from two nta ligands.Original Russian Text Copyright © 2004 by J. Wang, X. D. Zhang, Y. Wang, Y. Zhang, Z. R. Liu, J. Tong, and P. L. Kang__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 6, pp. 1067–1075, November–December, 2004.  相似文献   

16.
Cleavage of the E-P bond in compounds of the type (CF3)2EPh2(E = P, As) is achieved by polar [HBr, (CF3)2EI, (CH3)3SnH, (CF3)2AsH] and non-polar [Br2, Mn2(CO)10] substances. Exchange reactions are possible with (CF34)E2 and P2F4 leading to the unsymmetrical compounds (CF3)2PPF2, (CF3)2AsPF2, (CF3)2PAs(CF3)2, F2PPH2, (CF3)2AsPH2. The reaction of (CF3)2PPH2 with Mn2(CO)10 gives the new binuclear complex Mn2(CO)8PH2P(CF3)2 and Mn2(CO)8[P(CF3)2]2. The hitherto unknown compound (CF3)2AsPF2 is obtained by the reaction of (CF3)2AsPH2 with P2F4. Adducts of (CF3)2PPH2 with B2H6 and (CH3)3N, respectively, are discussed. Investigation of the reaction route and characterization of most of the reaction product is based on 1H and 19F NMR spectral data.  相似文献   

17.
New uranyl vanadates A3(UO2)7(VO4)5O (M=Li (1), Na (2), Ag (3)) have been synthesized by solid-state reaction and their structures determined from single-crystal X-ray diffraction data for 1 and 3. The tetragonal structure results of an alternation of two types of sheets denoted S for 2[UO2(VO4)2]4− and D for 2[(UO2)2(VO4)3]5− built from UO6 square bipyramids and connected through VO4 tetrahedra to 1[U(3)O5-U(4)O5]8− infinite chains of edge-shared U(3)O7 and U(4)O7 pentagonal bipyramids alternatively parallel to a- and b-axis to construct a three-dimensional uranyl vanadate arrangement. It is noticeable that similar [UO5]4− chains are connected only by S-type sheets in A2(UO2)3(VO4)2O and by D-type sheets in A(UO2)4(VO4)3, thus A3(UO2)7(VO4)5O appears as an intergrowth structure between the two previously reported series. The mobility of the monovalent ion in the mutually perpendicular channels created in the three-dimensional arrangement is correlated to the occupation rate of the sites and by the geometry of the different sites occupied by either Na, Ag or Li. Crystallographic data: 293 K, Bruker X8-APEX2 X-ray diffractometer equipped with a 4 K CCD detector, MoKα, λ=0.71073 Å, tetragonal symmetry, space group Pm2, Z=1, full-matrix least-squares refinement on the basis of F2; 1,a=7.2794(9) Å, c=14.514(4) Å, R1=0.021 and wR2=0.048 for 62 parameters with 782 independent reflections with I?2σ(I); 3, a=7.2373(3) Å, c=14.7973(15) Å, R1=0.041 and wR2=0.085 for 60 parameters with 1066 independent reflections with I?2σ(I).  相似文献   

18.
By replacing Mn in YCa3(MnO)3(BO3)4 with trivalent Al and Ga, two new borates with the compositions of YCa3(MO)3(BO3)4 (M=Al, Ga) were prepared by solid-state reaction. Structure refinements from X-ray powder diffraction data revealed that both of them are isostructural to gaudefroyite with a hexagonal space group P63/m. Cell parameters of a=10.38775(13)Å, c=5.69198(10)Å for the Al-containing compound and a=10.5167(3)Å, c=5.8146(2)Å for the Ga analog were obtained from the refinements. The structure is constituted of AlO6 or GaO6 octahedral chains interconnected by BO3 groups in the ab plane to form a Kagomé-type lattice, leaving trigonal and apatite-like tunnels. It is found that most rare-earth and Cr, Mn ions can be substituted into the Y3+ and M3+ sites, respectively, and the preference of rare-earth ions to locate in the trigonal tunnel is correlated to the sizes of the M3+ ions.  相似文献   

19.
Single crystals of diammonium tetranitratouranylate (NH4)2[UO2(NO3)4] (I) and a new diammonium tetranitratouranylate complex with 18-crown-6 [(NH4)(18C6)]2[UO2(NO3)4] (II) have been synthesized by the reaction of diaquadinitratouranyl tetrahydrate with ammonium nitrate in a nitric acid solution and the reaction of the same reagents with 18C6 in an ethanol solution, respectively. The X-ray diffraction analysis of compounds I and II has been performed. Crystals of compounds I and II are monoclinic, Z = 2, space group P21/n, a = 6.4075(5) ?, b = 7.7851(7) ?, c = 12.4461(12) ?, β = 101.239(1)°, V = 608. 94(9) ?3 for compound I and a = 10.542(9) ?, b = 8.590(8) ?, c = 22.5019(19) ?, β = 101.632(1)°, V = 2058.3(3) ?3 for compound II. The [UO2(NO3)4]2− complex anion in compounds I and II contains two monodentate and two bidentate cyclic nitrato groups, and the coordination number of uranyl is 6. The 18C6 molecule in the structure of compound II has the classic crown conformation and combined with the ammonium ion by three hydrogen bonds. Compounds I and II formed by electrostatic attraction forces between counterions are stabilized by (NH4+)NH...O(NO3) interionic hydrogen bonds.  相似文献   

20.
Reactions of [Pt2(μ-S)2(PPh3)4] with Ph3PbCl, Ph2PbI2, Ph2PbBr2 and Me3PbOAc result in the formation of bright yellow to orange solutions containing the cations [Pt2(μ-S)2(PPh3)4PbR3]+ (R3 = Ph3, Ph2I, Ph2Br, Me3) isolated as PF6 or BPh4 salts. In the case of the Me3Pb and Et3Pb systems, a prolonged reaction time results in formation of the alkylated species [Pt2(μ-S)(μ-SR)(PPh3)4]+ (R = Me, Et). X-ray structure determinations on [Pt2(μ-S)2(PPh3)4PbMe3]PF6 and [Pt2(μ-S)2(PPh3)4PbPh2I]PF6 have been carried out, revealing different coordination modes. In the Me3Pb complex, the (four-coordinate) lead atom binds to a single sulfur atom, while in the Ph2PbI adduct coordination of both sulfurs results in a five-coordinate lead centre. These differences are related to the electron density on the lead centre, and indicate that the interaction of the heterometal centre with the {Pt2S2} metalloligand core can be tuned by variation of the heteroatom substituents. The species [Pt2(μ-S)2(PPh3)4PbR3]+ display differing fragmentation pathways in their ESI mass spectra, following initial loss of PPh3 in all cases; for R = Ph, loss of PbPh2 occurs, yielding [Pt2(μ-S)2(PPh3)3Ph]+, while for R = Me, reductive elimination of ethane gives [Pt2(μ-S)2(PPh3)3PbMe]+, which is followed by loss of CH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号