首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reducing anthropogenic CO2 emission and lowering the concentration of greenhouse gases in the atmosphere has quickly become one of the most urgent environmental issues of our age. Carbon capture and storage (CCS) is one option for reducing these harmful CO2 emissions. While a variety of technologies and methods have been developed, the separation of CO2 from gas streams is still a critical issue. Apart from establishing new techniques, the exploration of capture materials with high separation performance and low capital cost are of paramount importance. Metal-organic frameworks (MOFs), a new class of crystalline porous materials constructed by metal-containing nodes bonded to organic bridging ligands hold great potential as adsorbents or membrane materials in gas separation. In this paper, we review the research progress (from experimental results to molecular simulations) in MOFs for CO2 adsorption, storage, and separations (adsorptive separation and membrane-based separation) that are directly related to CO2 capture.  相似文献   

2.
A magnetic functionalization of microcrystalline MOF particles was realized using magnetic iron oxide particles. Such magnetic MOFs can be separated using a static magnetic field after use in catalytic processes and heated by an external alternating magnetic field to trigger desorption of encaged drug molecules.  相似文献   

3.
4.
张晓琼  汪彤  王培怡  姚伟  丁明玉 《色谱》2016,34(12):1176-1185
金属有机骨架(MOFs)是一类由无机金属离子与有机配体自组装形成的新型有机-无机杂化多孔材料,因具有比表面积超高、结构多样、热稳定性良好、孔道尺寸和性质可调等优势,在分离领域表现出重要的应用价值。然而,采用传统方法制备的MOFs多为粒径在微米或亚微米尺度的晶体,且颗粒形貌不规则,因此限制了MOFs在样品前处理和色谱固定相等领域的应用和发展。构建基于MOFs的复合材料是弥补MOFs应用缺陷的一项有效措施,有望在保留MOFs优越的分离特性的同时,引入基体材料的特定性能。该文简要综述了近年来MOFs及其复合材料在吸附、样品前处理和色谱固定相等分离领域中的应用进展,并对MOFs在分离科学中的应用前景做出展望。  相似文献   

5.
6.
Porous materials such as metal-organic frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs) offer considerable potential for separating a variety of mixtures such as those relevant for CO(2) capture (CO(2)/H(2), CO(2)/CH(4), CO(2)/N(2)), CH(4)/H(2), alkanes/alkenes, and hydrocarbon isomers. There are basically two different separation technologies that can be employed: (1) a pressure swing adsorption (PSA) unit with a fixed bed of adsorbent particles, and (2) a membrane device, wherein the mixture is allowed to permeate through a micro-porous crystalline layer. In view of the vast number of MOFs, and ZIFs that have been synthesized there is a need for a systematic screening of potential candidates for any given separation task. Also of importance is to investigate how MOFs and ZIFs stack up against the more traditional zeolites such as NaX and NaY with regard to their separation characteristics. This perspective highlights the potency of molecular simulations in determining the choice of the best MOF or ZIF for a given separation task. A variety of metrics that quantify the separation performance, such as adsorption selectivity, working capacity, diffusion selectivity, and membrane permeability, are determined from a combination of Configurational-Bias Monte Carlo (CBMC) and Molecular Dynamics (MD) simulations. The practical utility of the suggested screening methodology is demonstrated by comparison with available experimental data.  相似文献   

7.
A novel approach for the separation of anions from aqueous mixtures was demonstrated, which involves their selective crystallization with metal-organic frameworks (MOFs) containing urea functional groups. Self-assembly of Zn2+ with the N,N'-bis(m-pyridyl)urea (BPU) linker results in the formation of one-dimensional MOFs including various anions for charge balance, which interact to different extents with the zinc nodes and the urea hydrogen-bonding groups, depending on their coordinating abilities. Thus, Cl-, Br-, I-, and SO4(2-), in the presence of BPU and Zn2+, form MOFs from water, in which the anions coordinate the zinc and are hydrogen-bonded to the urea groups, whereas NO3- and ClO4- anions either do not form MOFs or form water-soluble discrete coordination complexes under the same conditions. X-ray diffraction, FTIR, and elemental analysis of the coordination polymers precipitated from aqueous mixtures containing equivalent amounts of these anions indicated total exclusion of the oxoanions and selective crystallization of the halides in the form of solid solutions with the general composition ZnCl(x)Br(y)I(z).BPU (x + y + z = 2), with an anti-Hofmeister selectivity. The concomitant inclusion of the halides in the same structural frameworks facilitates the rationalization of the observed selectivity on the basis of the diminishing interactions with the zinc and urea acidic centers in the MOFs when going from Cl- to I-, which correlates with decreasing anionic charge density in the same order. The overall crystal packing efficiency of the coordination frameworks, which ultimately determines their solubility, also plays an important role in the anion crystallization selectivity under thermodynamic equilibration.  相似文献   

8.
Chiral metal-organic framework coated open tubular columns are used in the high-resolution gas chromatographic separation of chiral compounds. The columns have excellent selectivity and also possess good recognition ability toward a wide range of organic compounds such as alkanes, alcohols, and isomers.  相似文献   

9.
The gyroid is ubiquitous for underlying the construction of natural substance and artificial zeolites, but it has been, surprisingly, overlooked by chemists who work in the field of metal-organic frameworks (MOFs). In this work, a series of gyroidal MOFs with gie topology, constructed from 1,2-bis((5H-imidazol-4-yl)methylene)hydrazine and octahedral metal ions, such as Zn(II), Mn(II), Cu(II), and Ni(II), have been synthesized. The Zn(II) analogue, named as STU-1, shows exceptional thermal and chemical stabilities, and exhibits permanent porosity and CO(2) capture ability.  相似文献   

10.
金属有机框架材料的研究进展   总被引:1,自引:0,他引:1  
金属有机框架(metal-organic frameworks,MOFs)材料是一类由有机配体与金属中心经过自组装形成的具有可调节孔径的材料。与传统无机多孔材料相比,MOFs材料具有更大的比表面积,更高的孔隙率,结构及功能更加多样,因而已经被广泛应用于气体吸附与分离、传感器、药物缓释、催化反应等领域中。新兴材料的出现极大地促进了各个学科间的相互发展,本文综述了近年来MOFs材料的研究发展,包括MOFs材料自身的特点、国内外发展现状、应用领域以及复合MOFs材料的研究热点,并对今后的发展进行了展望。  相似文献   

11.
The binding of alkali and alkaline earth metal cations by macrocyclic and diazamacrobicyclic polyethers, composed of ordered arrays of hard oxygen (and nitrogen) donor atoms, underpinned the development of host-guest supramolecular chemistry in the 1970s and 1980s. The arrangement of -OCCO- and -OCCN- chelating units in these preorganized receptors, including, but not limited to, crown ethers and cryptands, is responsible for the very high binding constants observed for their complexes with Group IA and IIA cations. The cyclodextrins (CDs), cyclic oligosaccharides derived microbiologically from starch, also display this -OCCO- bidentate motif on both their primary and secondary faces. The self-assembly, in aqueous alcohol, of infinite networks of extended structures, which have been termed CD-MOFs, wherein γ-cyclodextrin (γ-CD) is linked by coordination to Group IA and IIA metal cations to form metal-organic frameworks (MOFs), is reported. CD-MOF-1 and CD-MOF-2, prepared on the gram-scale from KOH and RbOH, respectively, form body-centered cubic arrangements of (γ-CD)(6) cubes linked by eight-coordinate alkali metal cations. These cubic CD-MOFs are (i) stable to the removal of solvents, (ii) permanently porous, with surface areas of ~1200 m(2) g(-1), and (iii) capable of storing gases and small molecules within their pores. The fact that the -OCCO- moieties of γ-CD are not prearranged in a manner conducive to encapsulating single metal cations has led to our isolating other infinite frameworks, with different topologies, from salts of Na(+), Cs(+), and Sr(2+). This lack of preorganization is expressed emphatically in the case of Cs(+), where two polymorphs assemble under identical conditions. CD-MOF-3 has the cubic topology observed for CD-MOFs 1 and 2, while CD-MOF-4 displays a channel structure wherein γ-CD tori are perfectly stacked in one dimension in a manner reminiscent of the structures of some γ-CD solvates, but with added crystal stability imparted by metal-ion coordination. These new MOFs demonstrate that the CDs can indeed function as ligands for alkali and alkaline earth metal cations in a manner similar to that found with crown ethers. These inexpensive, green, nanoporous materials exhibit absorption properties which make them realistic candidates for commercial development, not least of all because edible derivatives, fit for human consumption, can be prepared entirely from food-grade ingredients.  相似文献   

12.
13.
This perspective discusses the use of sequential self-assembly in the construction of metal-organic frameworks through the systematic insertion, replacement, and removal of organic structural building units. We review previous works that can be classified as such sequential self-assembly in multidimensional MOFs.  相似文献   

14.
The class of coordination polymers known as metal-organic frameworks (MOFs) has three-dimensional porous structures that are considered as a promising alternative to zeolites and other nanoporous materials for catalysis, gas adsorption, and gas separation applications. In this paper, we present the first study of gas diffusion inside an MOF and compare the observed diffusion to known behaviors in zeolites. Using grand canonical Monte Carlo and equilibrium molecular dynamics, we calculate the adsorption isotherm and self-, corrected, and transport diffusivities for argon in the CuBTC metal-organic framework. Our results indicate that diffusion of Ar in CuBTC is very similar to Ar diffusion in silica zeolites in magnitude, concentration, and temperature dependence. This conclusion appears to apply to a broad range of MOF structures.  相似文献   

15.
高珂  郑斌 《化学通报》2023,86(2):233-239
丙烯、丙烷作为分子尺寸相近的共沸物,其分离一直是化工领域研究热点。金属有机骨架(MOFs)材料因其高度可调的孔道结构,在丙烯/丙烷分离应用上已展现出诱人潜能。本文基于Core MOF 2019数据库,采用巨正则蒙特卡洛基高通量计算筛选技术,获得了分离性优异的MOFs结构,发现其拥有适中的丙烯吸附量和较弱的丙烷吸附能力,且骨架孔径为3.70~4.10?、孔隙率中等(0.35~0.44),并揭示了孔道中心吸附位的选择性与丙烯/丙烷分离系数间关系。本研究阐明了高丙烯/丙烷分离性的骨架材料的结构和性能特征,为设计MOFs实现丙烯/丙烷的高效分离提供理论指导和数据支撑。  相似文献   

16.
Hydrogen sorption in functionalized metal-organic frameworks   总被引:12,自引:0,他引:12  
Five porous metal-organic frameworks based on linking zinc oxide clusters with benzene-1,4-dicarboxylate, naphthalene-2,6-dicarboxylate, 4,5,9,10-tetrahydropyrene-2,7-dicarboxylate, 2,3,5,6-tetramethylbenzene-1,4-dicarboxylate, or benzene-1,3,5-tris(4-benzoate) were synthesized in gram-scale quantities to measure their hydrogen uptake properties. Hydrogen adsorption isotherms measured at 77 K show a distinct dependence of uptake on the nature of the link. At 1 atm, the materials sorb between 4.2 and 9.3 molecules of H2 per formula unit. The results imply a trend in hydrogen uptake with the number of rings in the organic moiety.  相似文献   

17.
18.
Metal-organic frameworks based on trivalent lanthanides (LnMOFs) are a very promising class of materials for addressing the challenges in engineering of luminescent centres. Lanthanide-bearing phosphors find numerous applications in lighting, optical communications, photonics and biomedical devices. In this critical review we discuss the potential of LnMOFs as multifunctional systems, which combine light emission with properties such as microporosity, magnetism, chirality, molecule and ion sensing, catalysis and activity as multimodal imaging contrast agents. We argue that these materials present a unique chance of observing synergy between several of these properties, such as the coupling between photoluminescence and magnetism. Moreover, an integrated approach towards the design of efficient, stable, cheap, environmentally-friendly and multifunctional luminescent LnMOFs is still missing. Although research into LnMOFs is at its early stage and much basic knowledge is still needed, the field is ripe for new ideas, which will enable sensor devices and photonic prototypes to become a commercial reality (81 references).  相似文献   

19.
Two polyoxometalate-pillared 3D compounds, {Cu(5)(2-ptz)(6)(H(2)O)(4)(SiW(12)O(40))}·4H(2)O 1 and {Cu(9)(2-ptz)(12)(H(2)O)(6)(PMo(12)O(40))(2)}·H(2)O 2 (2-ptz = 5-(2-pyridyl)tetrazole) have been constructed based on different polyoxometalate anions, and copper-organic coordination polymer sheets by a hydrothermal method. Magnetic investigations reveal that both 1 and 2 exhibit antiferromagnetic coupling between the Cu(II) ions. Structural studies show the compound 1 exhibits a typical pcu-type net with the Sch?lfli symbol of {4(12)·6(3)}, and that compound 2 is a (3,4,6)-connected framework with novel {4(4)·6(10)·10}{6(3)}(2){6(5)·8} topology which has not been reported to date.  相似文献   

20.
Diffusion-controlled luminescence quenching of a phosphorescent metal-organic framework built from the Ru(bpy)(3)(2+)-derived bridging ligand (MOF-1) was studied using a series of amines of different sizes as quenchers. The dynamics of amine diffusion into solvent-filled MOF-1 channels was probed by modeling time-dependent luminescence quenching data, which provide quantitative diffusion coefficients for the amine quenchers. Triethylamine, tripropylamine, and tributylamine were found to follow Fickian diffusion with a diffusivity of (1.1 ± 0.2) × 10(-13), (4.8 ± 1.2) × 10(-14), and (4.0 ± 0.4) × 10(-14) m(2)/s, respectively. Diisopropylethylamine (DIPEA), on the other hand, was found to be too large to enter the MOF channels. Despite its size, 4-MeOPhNPh(2) can enter the MOF channels via a slow, complicated framework/guest intercalation process to result in extensive framework distortion as revealed by powder X-ray diffraction. This work represents the first quantitative study of the dynamics of molecular diffusion into solvent-filled MOF channels. Such quantitative information on molecular diffusion in MOFs is of fundamental importance to many of their potential applications (e.g., heterogeneous catalysis).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号