首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A maximally divergent "build-couple" synthesis of heterofunctionalized polyvalent molecules is described. This strategic approach enables the synthesis of highly diverse polyvalent structures from a pre-programmed combinatorial set of modules.  相似文献   

2.
A hypothesis concerning the exponential buildup of polyelectrolyte multilayer films prepared by layer-by-layer assembly has become widely accepted in the scientific community. This model was first introduced with experimental data in Langmuir. It was subsequently described in Proceedings of the National Academy of Sciences and extended and amended in papers in Langmuir and other journals. According to the "in and out diffusion" hypothesis, as it is called, or "common rule" of exponential multilayer film buildup, as it is widely regarded, "a diffusion-based buildup mechanism ... explains most of the exponential-like growth process of polyelectrolyte multilayers reported in the literature." The present work offers an alternative viewpoint to specific elements of the hypothesis and the model as a whole.  相似文献   

3.
The cell interior is rich in anionic polyelectrolyte filaments. They are normally prevented from aggregating nonspecifically with polyvalent counterions by multiple mechanisms involving specific protein ligands and dynamic processes far from equilibrium. In contrast, extracellular protein filaments are generally not polyelectrolytes, and extracellular fluids are rich in polycations but devoid of ATP-consuming dynamic regulation of polymer assembly. As a result, when intracellular polyelectrolytes like DNA or F-actin enter the extracellular space they often form large bundles with polycationic peptides or other factors, some of which are required for defense against bacteria. Formation of polyelectrolyte aggregates can have not only some beneficial effects, but also many harmful effects related to changing extracellular fluid viscoelasticity and antimicrobial function.  相似文献   

4.
An approach for the generation of photo controllable drug release polyelectrolyte multilayers is developed by combining double "plug and play" (PnP) templates technology and host-guest chemistry. These multilayers exhibited a reversible drug loading and release achieved by the photoinduced isomerization.  相似文献   

5.
The effect of salts on adsorbed polyelectrolyte conformations has been studied extensively over the past three decades. Previous researchers have proposed that increasing salt concentration results in larger loops and tails for weak polyelectrolytes adsorbed on a surface. However, no experimental verification of this theory has been published. In this work, we present experimental verification acquired by "pulling" single molecules of a polyelectrolyte from a mica surface using a scanning probe technique. We also present a new method for analyzing changes in adsorbed polymer tail lengths. We demonstrate that increasing solution salt concentration correlates with both loop and tail lengths of an adsorbed low charge density cationic polyacrylamide on a mica substrate.  相似文献   

6.
Size-controlled, low-dispersed calcium carbonate microparticles were synthesized in the presence of the amphiphilic block copolymer polystyrene-b-poly(acrylic acid) (PS-b-PAA) by modulating the concentration of block copolymer in the reactive system. This type of hybrid microparticles have acid-resistant properties. By investigating the aggregation behaviors of PS-b-PAA micelles by transmission electron microscopy (TEM), the mechanism of hybrid calcium carbonate formation illustrated that the block copolymer served not only as "pseudonuclei" for the growth of calcium carbonate nanocrystals, but also forms the supramicelle congeries, a spherical framework, as templates for calcium carbonate nanocrystal growth into hybrid CaCO(3) particles. Moreover, this pilot study shows that the hybrid microparticle is a novel candidate as a template for fabricating multilayer polyelectrolyte capsules, in which the block copolymer is retained within the capsule interior after core removal under soft conditions. This not only facilitates the encapsulation of special materials, but also provides "micelles-enhanced" polyelectrolyte capsules.  相似文献   

7.
We report on the "molecular wiring" efficiency of glucose oxidase in organized self-assembled nanostructures comprised of enzyme layers alternating with layers of an osmium-derivatized poly(allylamine) cationic polyelectrolyte, acting as redox relays. Varying the relative position of the active enzyme layer in nanostructures alternating active enzyme and inactive apoenzyme we have demonstrated that the specific rate of bimolecular FADH(2) oxidation ("wiring efficiency") is limited by the diffusion-like electron hopping mechanism in the multilayers.  相似文献   

8.
"Like-charge attraction" is a phenomenon found in many biological systems containing DNA or proteins, as well as in polyelectrolyte systems of industrial importance. "Like-charge attraction" between polyanions is observed in the presence of mobile multivalent cations. At a certain limiting concentration of cations, the negatively charged macroions cease to repel each other and even an attractive force between the anions is found. With classical molecular dynamics simulations it is possible to elucidate the processes that govern the attractive behavior with atomistic resolution. As an industrially relevant example we study the interaction of negatively charged carboxylate groups of sodium polyacrylate molecules with divalent cationic Ca2+ counterions. Here we show that Ca2+ ions initially associate with single chains of polyacrylates and strongly influence sodium ion distribution; shielded polyanions approach each other and eventually "stick" together (precipitate), contrary to the assumption that precipitation is initially induced by intermolecular Ca2+ bridging.  相似文献   

9.
The rheological response of selected aqueous alumina suspensions, stabilised with a polyelectrolyte or with an organic polyvalent salt dispersant, and including poly(vinyl) alcohol (PVA) as a binder, are described in this study. The polymer dispersant was composed of an ammonium salt of poly(methacrylate) and the organic polyvalent compound was a sodium salt of an aromatic sulphate. The results show that the addition of PVA, without any included dispersant does not significantly influence the rheology of the system. However, in the presence of a dispersant the rheology is greatly affected. At a given concentration of the dispersant, the viscosity, storage and loss moduli all increase, as the PVA concentration is increased. Also, for a given concentration of the PVA, it is observed that the viscosity, storage and loss moduli values increase as the concentration of the dispersant is increased. It is argued that at low PVA concentrations, an excess concentration of the unadsorbed dispersant causes flocculation of the particles in the suspension by a reduction of the repulsive electrostatic (double layer) effect. In contrast, at higher concentrations of the PVA the flocculation of the suspension is promoted via a depletion mechanism.  相似文献   

10.
The "carpet"/brush double layer structure in the polyelectrolyte layer in the amphiphilic diblock copolymer monolayer at the air-water interface was quantitatively studied by in situ neutron reflectometry in addition to X-ray reflectivity measurements. As a result of the higher contrast between polyelectrolyte [poly(methacrylic acid)] and solvent (D(2)O) for the neutron, the brush structure could be estimated more accurately as a function of surface pressure, that is, brush density. The thickness of the carpet layer, which is thought to be formed to reduce the interfacial free energy between water and the hydrophobic layer, was almost constant at 10-20 A at any surface pressure studied. Growth was clearly observed in the whole brush length with increasing surface pressure, and it was estimated to be almost 60% of the full-stretch length of the ionic polymer chain. Furthermore, by the comparison of density profiles by neutron and X-ray reflectometry, an anomalous hydration was suggested.  相似文献   

11.
"Swiss-cheese" polyelectrolyte gels (i.e., gels containing a regular set of closed spherical pores) are considered as a suitable system for modeling of a medium with extremely inhomogeneous distribution of charged species. It is shown that the inhomogeneous distribution of ions in Swiss-cheese polyelectrolyte gels can be reached simply by immersion of the gels in an aqueous solution of charged species (e.g., low-molecular 1-1 salt or multivalent ions and macroions charged likely to the gel chains). If a polymer gel is kept in such a solution for a long time, the concentration of ions within relatively big voids becomes equal to that in external solution. On the other hand, due to the Donnan effect the ion's concentration in polymer matrix is always lower than that in external solution. As a result the multivalent ions distribute between water voids and polymer matrix. The extent of this distribution is characterized by partition coefficient kD (determined as ratio kD = n(s)(void)/n(s)(mat) of the concentrations n(s)(void) and n(s)(mat) of ions in water voids and in polymer matrix, correspondingly). It is shown that the partition coefficient kD can be larger than 10 for low-molecular salt, reaches 10(3) for bivalent ions, and is higher than 10(6) for tetravalent ions. In the case of polymer macroions the partition coefficient kD tends to infinity. Our calculations show that the lower limit of characteristic scales of heterogeneity (determined by water voids size starting from which the condition of total electroneutrality is fulfilled and effect of partition is the most pronounced) can be equal to tens of nanometers.  相似文献   

12.
By using a combination of atomic force and confocal microscopy, we explore the deformation properties of multilayer microcapsules filled with a solution of strong polyelectrolyte. Encapsulation of polyelectrolyte was performed by regulation of the multilayer shell permeability in water-acetone solutions. The "filled"capsules prepared by this method were found to be stiffer than "hollow" ones, which reflects the contribution of the excess osmotic pressure to the capsule stiffness. The force-deformation curves contain three distinct regimes of reversible, partially reversible, and irreversible deformations depending on the degree of compression. The analysis of the shape of compressed capsules and of the inner polyelectrolyte spacial distribution allowed one to relate the deformation regimes to the permeability of the multilayer shells for water and inner polyelectrolyte at different stage of compression.  相似文献   

13.
Bacterial cells and other biological particles carry charged macromolecules on their surface that form a "soft" ion-permeable layer. In this paper, we test the applicability of an electrokinetic theory for soft particles to characterize the electrophoretic mobility (EPM) and adhesion kinetics of bacterial cells. The theory allows the calculation of two parameters--the electrophoretic softness and the fixed charged density--that define the characteristics of the polyelectrolyte layer at the soft particle surface. The theory also allows the calculation of an outer-surface potential that may better predict the electrostatic interaction of soft particles with solid surfaces. To verify its relevance for bacterial cells, the theory was applied to EPM measurements of two well-characterized Escherichia coli K12 mutants having lipopolysaccharide (LPS) layers of different lengths and molecular compositions. Results showed that the obtained softness and fixed charge density were not directly related to the known characteristics of the LPS of the selected strains. Interaction energy profiles calculated from Derjaguin-Landau-Verwey-Overbeek (DLVO) theory were used to interpret bacterial deposition (adhesion) rates on a pure quartz surface. The outer surface potential failed to predict the low attachment efficiencies of the two bacterial strains. The lack of success in the application of the theory for soft particles to bacterial cells is attributed to chemical and physical heterogeneities of the polyelectrolyte layer at the cell surface.  相似文献   

14.
Complexation of a cationic polyelectrolyte, poly-N-benzyl-N,N-dimethyl-N-methacryloyloxyethylammonium chloride, with an ananionic surfactant, sodium dodecyl sulfate, in aqueous solutions is studied. The effect of the molecular weight of the polymer on phase separation in the system and on the stability, conformation, and surface activity of the polyelectrolyte-surfactant complexes is examined.  相似文献   

15.
The validity of the macroscopic Donnan model for polyelectrolytes in an electrolyte solution is examined by taking into account the effects of the varying potential distribution across the boundary between a polyelectrolyte and the surrounding solution, using the composite Poisson-Boltzmann equations for the polyelectrolyte interior and the surrounding solution. Calculations are made for a planar polyelectrolyte of thickness 2d and a planar polyelectrolyte layer of thicknessd covering a rigid surface, both showing the identical potential distribution. A simple expression for a correction factor for these effects is derived which enables to evaluate various corrected quantities in the polyelectrolyte interior such as the average potential, the average ionic concentration, the average degree of dissociation and the apparent dissociation constant of ionizable groups in the polyelectrolyte. It is found that when d1 (where indicates the Debye-Hückel parameter) the macroscopic Donnan model can safely be applied, while as d decreases the effects of the varying potential distribution become appreciable.  相似文献   

16.
Enzyme‐loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer‐by‐layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery.

  相似文献   


17.
The effect of molecular mass on the formation of a bilayer structure upon the layer-to-layer adsorption of a cationic polyelectrolyte (poly(dimethyldiallylammonium chloride), molecular mass M = 500000 and 100000-200000 Da) and an anionic polyelectrolyte sodium (poly(acrylate), M = 30000 and 2100 Da) on the surface of fused quartz is studied by the capillary electrokinetic method. The time required to reach constant adsorption values and the structure of bilayer systems depend on the ratio between molecular masses of the cationic and anionic polyelectrolytes. The deformability of the bilayer system significantly exceeds that of the first layer in the case when the second layer is formed from an anionic polyelectrolyte with a lower molecular mass, thus suggesting the loosening of the first adsorption layer of the cationic polyelectrolyte. The adsorption of the anionic polyelectrolyte with higher molecular mass insignificantly affects the density of the first layer. Variation in the deformability of the layer with time (its aging) depends on the ratio between molecular masses of the polyelectrolytes.  相似文献   

18.
When a cation exchange membrane is immersed in a cationic polyelectrolyte solution to form a thin layer on the membrane surface, the membrane properties are changed: permselectivity between cations with different electric charges (a relative transport number of the calcium ions to sodium ions, P), current efficiency, and electric resistance of the membrane. Here the more compact the cationic polyelectrolyte layer, the more outstanding the change in permselectivity. To make a more compact layer, an electrodeposition method was adopted and a change in the permselectivity of the resultant cation exchange membrane was investigated. By using the electrodeposition method a strongly basic polyelectrolyte with a larger molecular weight effectively changed the permselectivity of the cation exchange membrane: the P value dropped to about 0.3 from about 2.5 of the P of the untreated membrane during electrodialysis of the sodium chloride—calcium chloride system, and an increase in the electric resistance of the membrane (i.e., organic fouling) due to a cationic surface-active agent could be prevented. It is noteworthy that by using the strongly basic polyelectrolyte with a larger molecular weight the electrodeposition method was effective, whereas the immersion method was ineffective. Furthermore, even with the electrodeposition method the cationic polyelectrolyte which had a relatively smaller molecular weight resulted in a more remarkable change in the P value than did that with a larger molecular weight. In the electrodeposition method the amount of polyelectrolyte cohered onto the membrane surface in creased with an increase in the concentration of the polyelectrolyte, and weakly basic polyelectrolyte, and weakly basic polyelectroyte (polyethyleneimine) was also available independent of its molecular weight.  相似文献   

19.
We consider the electrosteric repulsion of colloidal particles whose surface carries a dense layer of long polyelectrolyte chains (spherical polyelectrolyte brushes). The theory of electrosteric repulsion of star polyelectrolytes developed recently is augmented to include particles with a finite core radius. It is shown that most of the counterions are confined within the brush layer. The strong osmotic pressure thus created within the brush layer dominates the repulsive interaction between two such particles. Because of this the pair interaction potential between spherical polyelectrolyte brushes can be given in terms of an analytic expression. The theoretical predictions are compared with available experimental data and semi-quantitative agreement between the two is found.  相似文献   

20.
The semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte–insulator–semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance–voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed.
Figure
Label-free electrical monitoring of polyelectrolyte multilayer formation by means of a capacitive field-effect sensor consisting of Al-p-Si-SiO2 structure. The consecutive adsorption of oppositely charged polyelectrolyte layers leads to alternating shifts of the capacitance-voltage and constant-capacitance curves, whereas the direction of these shifts correlates with the charge sign of the terminating polyelectrolyte layer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号