首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we present the first synthesis of a [3]rotaxane with two dumbbell components threaded through a single gamma-cyclodextrin macrocycle. This synthesis is carried out in two steps: first one dumbbell is synthesized threaded through the macrocycle to give a [2]rotaxane, then a second dumbbell is synthesized through the remaining cavity of the [2]rotaxane. We have synthesized a hetero- [3]rotaxane with one stilbene and one cyanine dye threaded through gamma-cyclodextrin, which exhibits quantitative energy transfer between the two encapsulated dyes. The stilbene [2]rotaxane intermediate in this synthesis has a remarkably high affinity for suitably shaped hydrophobic guests in aqueous solution, facilitating the synthesis of [3]rotaxanes and suggesting possible applications in sensors.  相似文献   

2.
[reaction: see text] We have synthesized a [2]rotaxane from a crown-ether-like macrocycle that undergoes ring opening and closing through cleavage and formation of imino bonds of a salen moiety; the self-assembly of this macrocycle and a dumbbell-shaped rodlike component, followed by addition of nickel acetate, afforded, after counterion exchange, a [2]rotaxane that is stabilized through coordination of the Ni ion to the macrocycle's salen moiety.  相似文献   

3.
We report a diverted route to [1]rotaxane and tris-branched [1]rotaxane that are devoid of any efficient template and which could not be obtained by classical straightforward strategies. The described chemical route relies on the utilization of a “macrocycle transporter”, which is able first to bind a macrocycle, second to link temporarily a triazolium-containing molecular axle, and third to deliver the macrocycle around the new docked axle through molecular machinery in a [1]rotaxane structure. The extended encircled thread is eventually cleaved by an amine or a triamine to afford the triazolium-containing [1]rotaxanes, releasing at the same time, the macrocycle transporter as a recyclable species.  相似文献   

4.
The mild and highly efficient thiol-ene click reaction has been used to construct a rotaxane incorporating dibenzo-24-crown-8 (DB24C8) and a dibenzylammonium-derived thread in high yield under the irradiation of UV light. A rotaxane containing a disulfide linkage in the macrocycle was also synthesized by the thiol-ene click reaction. It has been demonstrated that the formation of the [2]rotaxane with the disulfide bond in the macrocycle occurs by a mechanism that is different to the threading-followed-by-stoppering process. The successful construction of a rotaxane directly from its constituent components, the macrocycle containing a disulfide linkage and the dibenzylammonium hexafluorophosphate salt, suggests that the space within the macrocycle incorporating the disulfide linkage is smaller than the phenyl unit and a plausible reaction mechanism has been proposed as follows: A small amount of the initiator forms two radicals upon the absorption of UV irradiation; the radicals act as a "key" to "unlock" the disulfide bond in the macrocycle. The resulting crown ether like moiety in the macrocycle is clipped around the ammonium ion center in the dumb-bell-shaped compound. The [2]rotaxane is generated upon recombination of the disulfide linkage.  相似文献   

5.
Two novel multilevel switchable [2]rotaxanes containing an ammonium and a triazole station have been constructed by a CuI‐catalyzed azide–alkyne cycloaddition reaction. The macrocycle of [2]rotaxane containing a C6‐chain bridge between the two hydrogen bonding stations exhibits high selectivity for the ammonium cation in the protonated form. Interestingly, the macrocycle is able to interact with the two recognition stations when the bridge between them is shortened. Upon deprotonation of both [2]rotaxanes, the macrocycle moves towards the triazole recognition site due to the hydrogen‐bond interaction between the triazole nitrogen atoms and the amide groups in the macrocycle. Upon addition of chloride anion, the conformation of [2]rotaxane is changed because of the cooperative recognition of the chloride anion by a favorable hydrogen‐bond donor from both the macrocycle isophthalamide and thread triazole CH proton.  相似文献   

6.
We report that a 2,2':6',2″-terpyridylmacrocycle-Ni complex can efficiently mediate the threading of two alkyl chains with bulky end groups in an active metal template sp(3)-carbon-to-sp(3)-carbon homocoupling reaction, resulting in a rare example of a doubly threaded [3]rotaxane in up to 51% yield. The unusual architecture is confirmed by X-ray crystallography (the first time that a one-ring-two-thread [3]rotaxane has been characterized in the solid state) and is found to be stable with respect to dethreading despite the large ring size of the macrocycle. Through such active template reactions, in principle, a macrocycle should be able to assemble as many axles in its cavity as the size of the ring and the stoppers will allow. A general method for threading multiple axles through a macrocycle adds significantly to the tools available for the synthesis of different types of rotaxane architectures.  相似文献   

7.
A bis‐branched [3]rotaxane, with two [2]rotaxane arms separated by an oligo(para‐phenylenevinylene) (OPV) fluorophore, was designed and investigated. Each [2]rotaxane arm employed a difluoroboradiaza‐s‐indacene (BODIPY) dye‐functionalized dibenzo[24]crown‐8 macrocycle interlocked onto a dibenzylammonium in the rod part. The chemical structure of the [3]rotaxane was confirmed and characterized by 1H and 13C NMR spectroscopy and high‐resolution ESI mass spectrometry. The photophysical properties of [3]rotaxane and its reference systems were investigated through UV/Vis absorption, fluorescence, and time‐resolved fluorescence spectroscopy. An efficient energy‐transfer process in [3]rotaxane occurred from the OPV donor to the BODIPY acceptor because of the large overlap between the absorption spectrum of the BODIPY moiety and the emission spectrum of the OPV fluorophore; this shows the important potential of this system for designing functional molecular systems.  相似文献   

8.
《中国化学快报》2022,33(11):4904-4907
A bistable [2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) unit was synthesized, which could be utilized to optical probe the molecular shuttling motion of the functionalized rotaxane system. The UV–vis, 1H NMR and PL spectroscopic data clearly demonstrated that the DPAC ring was interlocked onto the thread and the fluorescence intensity of the DPAC unit in the macrocycle was effectively regulated by the location change of the macrocycle along the thread under acid/base stimulation, which was attributed to the modulation of the intramolecular photo-induced electron transfer between the DPAC unit and the methyltriazole (MTA) unit. This bistable rotaxane system containing a conformation-adaptive fluorophore unit in the macrocycle moiety opens an alternative way to design functional bistable mechanically interlocked molecules.  相似文献   

9.
Although various methods for switching the positions of macrocycles in bistable rotaxane-based molecular shuttles have been developed, exploiting such movements to trigger property changes has thus far received little attention. Here we describe one of the first examples of a property change achieved through a controlled large-amplitude translational motion in a rotaxane; a novel type of chiroptical switch is described, in which light-induced translation of the macrocycle along the thread of a [2]rotaxane produces a strong induced circular dichroism (ICD) response only when the macrocycle is hydrogen-bonded to a chiral peptide station.  相似文献   

10.
A general synthesis of triazolium‐containing [2]rotaxanes, which could not be accessed by other methods, is reported. It is based on a sequential strategy starting from a well‐designed macrocycle transporter which contains a template for dibenzo‐24‐crown‐8 and a N‐hydroxysuccinimide (NHS) moiety. The sequence is: 1) synthesis by slippage of a [2]rotaxane building‐block; 2) its elongation at its NHS end; 3) the delivery of the macrocycle to the elongated part of the axle by an induced translational motion; 4) the contraction process to yield the targeted [2]rotaxane and recycle the initial transporter.  相似文献   

11.
A novel chemically-controlled [2]rotaxane molecular shuttle was successfully designed and synthesized. A H2S-responsive bulk barrier was introduced between the two identical recognition stations of the [2]rotaxane to prevent dynamic shuttling of the macrocycle. Upon addition of H2S, the complete intramolecular cascade reaction occurs in a controllable manner, resulting in removal of the bulk barrier and the shuttling motion of the macrocycle between the two stations recovers.  相似文献   

12.
A [2]rotaxane-based molecular shuttle comprised a macrocycle mechanically interlocked to a chemical "dumbbell" has been prepared in high yields by a thermodynamically controlled, template-induced clipping procedure. This molecular shuttle has two different recognition sites, namely, -NH2 +- and amide, separated by a phenyl unit. The macrocycle exhibits high selectivity for the -NH2+- recognition sites in the protonated form through noncovalent interactions, which include 1) N+-H...O hydrogen bonds; 2) C-H...O interactions between the CH2NH2+CH2 protons on the thread and the oligo(ethylene glycol) unit in the macrocycle; 3) pi...pi stacking interaction between macrocycle and aromatic unit. Upon deprotonation of the [2]rotaxane the macrocycle glides to the amide recognition site due to the hydrogen bonds between the -CONH- group and the oligo(ethylene glycol) unit in the macrocycle. The deprotonation process requires about 10 equivalents of base (iPr2NEt) in polar acetone, while the amount of base is only 1.2 equivalents in apolar tetrachloroethane. Upon addition of Li+, the conformation of the [2]rotaxane was altered as a result of the collective interactions of 1) hydrogen bonds between pyridine nitrogen and amide hydrogen atoms; 2) coordination between the oligo(ethylene glycol) unit, amide oxygen atom and Li+ cation. Then, when Zn2+ ions are added, the macrocycle returns to the deprotonated -NH- recognition site owing to coordination of the macrocycle and -NH- from the axle with the Zn2+ ion. All the above-mentioned movement processes are reversible through the alternate addition of TFA/iPr2NEt, Li/[12]-crown-4 and Zn2+/ethylenediaminetetraacetate (EDTA), by virtue of hydrogen bonding and metal-ion complexation. Significantly, the three independent movement processes are all accompanied by fluorescent responses: 1) complete repression in the protonated form; 2) low-level expression in the deprotonated form; 3) medium-level expression following addition of Li+; 4) high-level expression on complexation with Zn2+.  相似文献   

13.
A [2]rotaxane built around a multi-responsive bis-acridinium macrocycle has been synthesized. Structural investigation has confirmed the interlocked nature of the molecule, and MD simulations illuminated its conformational dynamics with atomic resolution. Both halochromic and redox-switching properties were explored to shed light on the mechanical response and electronic changes that occur in the bis-acridinium [2]rotaxane. The topology of the rotaxane led to different mechanical behaviors upon addition of hydroxide ions or reduction that were easily detected by UV/Vis spectroscopy and electrochemistry.  相似文献   

14.
With a dinuclear macrocycle 2 that contains weak reversible OsVI-N coordinate bonds, self-assembly and equilibrium dynamics of [2]- and [3]rotaxanes have been investigated. When the macrocycle 2 was mixed together with threads 4a-e, which all contain an adipamide station but different sizes of end groups, [2]pseudorotaxane- and rotaxane-like complexes were immediately formed with large association constants of >7 x 103M(-1) in CDCl3 at 298 K. Exchange dynamics, explored by 2D-EXSY experiments, suggest that assembly and disassembly of complexes occur through two distinct pathways, slipping or clipping, and this depends on the size of the end groups. The slipping pathway is predominant with smaller end groups that give pseudorotaxane-like complexes, while the clipping pathway is observed with larger end groups that yield rotaxane-like complexes. Under the same conditions, exchange barriers (deltaG++) were 14.3 kcalmol(-1) for 4a and 16.7 kcalmol(-1) for 4d, and indicate that the slipping process is at least one order of magnitude faster than the clipping process. Using threads 13a and 13b that contain two adipamide groups, more complicated systems have been investigated in which [2]rotaxane, [3]rotaxane, and free components are in equilibrium. Concentration- and temperature-dependent 1H NMR spectroscopic studies allowed the identification of all possible elements and the determination of their relative distributions in solution. For example, the relative distribution of the free components, [2]rotaxane, and [3]rotaxane are 30, 45, and 25 %, respectively, in a mixture of 2 (2mM) and 13a (2mM) in CDCl3 at 10 degrees C. However, [3]rotaxane exists nearly quantitatively in a mixture of 2 (4 mM) and 13 a (2 mM) in CDCl3 at a low temperature - 10 degrees C.  相似文献   

15.
A [2]rotaxane was produced through the assembly of a picolinaldehyde, an amine, and a bipyridine macrocycle around a CuI template by imine bond formation in close‐to‐quantitative yield. An analogous [3]rotaxane is obtained in excellent yield by replacing the amine with a diamine, thus showing the suitability of the system for the construction of higher order interlocked structures. The rotaxanes are formed within a few minutes simply through mixing the components in solution at room temperature and they can be isolated through removal of the solvent or precipitation.  相似文献   

16.
A tight [2]rotaxane with two chromophores as stoppers is described, in which the macrocycle is able to reversibly move by tuning of base. This moving process can result in intramolecular photo-induced electron transfer (PET), changing the photo-physical properties.  相似文献   

17.
Leigh DA  Thomson AR 《Organic letters》2006,8(23):5377-5379
[Structure: see text] Protonation controls the location of a dual binding mode macrocycle in a [2]rotaxane. In the neutral form, amide-amide hydrogen bonds hold the macrocycle over a dipeptide residue; when the thread is protonated, polyether-ammonium cation interactions dominate and the macrocycle changes position.  相似文献   

18.
A series of [2]rotaxanes containing succinamide and naphthalimide hydrogen-bonding stations for a benzylic amide macrocycle is described. Electrochemical reduction and oxidation of the naphthalimide group alters its ability to form hydrogen bonds to the macrocycle to such a degree that redox processes can be used to switch the relative macrocycle-binding affinities of the two stations in a rotaxane by over 8 orders of magnitude. The structure of the neutral [2]rotaxane in solution is established by (1)H NMR spectroscopy and shows that the macrocycle exhibits remarkable positional integrity for the succinamide station in a variety of solvents. Cyclic voltammetry experiments allow the simultaneous stimulation and observation of a redox-induced dynamic process in the rotaxane which is both reversible and cyclable. Model compounds in which various conformational and co-conformational changes are prohibited demonstrate unequivocally that the redox response is the result of shuttling of the macrocycle between the two stations. At room temperature in tetrahydrofuran the electrochemically induced movement of the macrocycle between the two stations takes approximately 50 micros.  相似文献   

19.
A dinuclear self-assembled cationic macrocycle based on Pt(II)-N(pyridine) coordinative bonds and having competitive triflate anions, as metal counterions, is used in the construction of [2]rotaxane and [2]pseudorotaxane architectures assisted by hydrogen bonding. The kinetic lability of the Pt(II)-N(pyridine) coordinative bond controls the dynamics of the [2]rotaxane.  相似文献   

20.
Although there have been a lot of reports on the synthesis and properties of [n]rotaxanes (mainly n = 2), only a few reports on the synthesis of [1]rotaxane has been published by V?gtle's group and others (see ref 5). Generally speaking, [1]rotaxane might be expected to exhibit properties different from other rotaxanes, because the rotor and the axle in the [1]rotaxane is bound covalently and closely. We report on a novel method to make [1]rotaxanes via covalent bond formation from a macrocyclic compound. That is, we first prepared a bicyclic compound from macrocycle and then proceeded to [1]rotaxane by aminolysis. This is the first synthetic example of preparation of [1]rotaxane via covalent bond formation, not utilizing weak interactions such as hydrogen bonding, charge transfer, via metal complexation, etc. This method might provide a powerful and new tool for construction of [1]rotaxane as a new supramolecular system. In addition, we investigated energy transfer from rotor to axle using [1]rotaxane that we prepared. Energy transfer occurred perfectly from the naphthalene ring of the rotor to the anthracene ring of the axle. We found also that only lithium ion among alkali ions can drastically enhance the fluorescence intensity. This finding could be applicable to ion-sensing systems, switching devices, and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号