首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the influence of a flip operation of the central spin on the quantum criticality of a radical pair system by employing the spin echo and its product yield. It is found that with echo control on the central spin, the critical behavior can be described by the product yield at very high temperatures. Moreover, we also study the short and long time behavior of the spin echo, and show that the decay factor of the short time evolution scales linearly. The long time evolution shows different statistics for varying chain lengths, temperature and external parameters of the Hamiltonian.  相似文献   

2.
We obtain an effective spin correlation Hamiltonian describing the interaction of light with a two-level atom, then we investigate the classical trajectory of the two-level atom system by numerical integration of the Heisenberg equation of motion. Our results show that the spin accumulation is a very popular phenomenon as long as the spin character cannot be ignored in the Hamiltonian. We propose experimental protocol to observe this new phenomenon in further experiments.  相似文献   

3.
Graphene nanodisk is a graphene derivative with a closed edge. The trigonal zigzag nanodisk with size N has N-fold degenerated zero-energy states. It can be interpreted as a quantum dot with an internal degree of freedom. The ground state of nanodisk is a quasi-ferromagnet, which is a ferromagnetic-like state with a finite but very long life time. We investigate spin-filter effects in the system made of nanodisks and leads. A novel feature of the nanodisk spin filter is that its spin can be controlled by the spin current. We propose some applications for spintronics, such as spin memory, spin amplifier and spin diode. It is argued that a spin current is reinforced (rectified) by feeding it into a nanodisk spin amplifier (diode). Graphene nanodisk would be a promising candidate of future electronic and spintronic nanodevices.  相似文献   

4.
We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small samples of the kagomé lattice of up to N=36 sites. In agreement with the conclusions of previous authors, we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic () excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic () excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which could support long range chiral order. We do not know if these states will be true thermodynamic states or only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional quantum antiferromagnets. Received: 27 November 1997 / Accepted: 29 January 1998  相似文献   

5.
We propose a mechanism where high entanglement between very distant boundary spins is generated by suddenly connecting two long Kondo spin chains. We show that this procedure provides an efficient way to route entanglement between multiple distant sites. We observe that the key features of the entanglement dynamics of the composite spin chain are well described by a simple model of two singlets, each formed by two spins. The proposed routing mechanism is a footprint of the emergence of a Kondo cloud in a Kondo system and can be engineered and observed in varied physical settings.  相似文献   

6.
The response of a spin system to a long (in comparison to spin–spin relaxation time T2) radiofrequency pulse has been studied. We observed that the magnetization after the long pulse does not fall to zero at time tT2 for both on-resonance and off-resonance conditions. The dependencies of the magnetization on frequency offset, linewidth and radiofrequency power are investigated, both theoretically and experimentally. The question of the effective field direction is also discussed.  相似文献   

7.
We present a method for reading out the spin state of electrons in a quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correlated to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. We experimentally demonstrate the method by performing readout of the two-electron spin states, achieving a single-shot visibility of more than 80%. We find very long triplet-to-singlet relaxation times (up to several milliseconds), with a strong dependence on the in-plane magnetic field.  相似文献   

8.
We report on a method for single-shot readout of spin states in a semiconductor quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correlated to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. The method is analyzed theoretically, and compared to a previously used method. We experimentally demonstrate the method by performing readout of the two-electron spin states, achieving a single-shot visibility of more than 80%. We find very long triplet-to-singlet relaxation times (up to several milliseconds), with a strong dependence on in-plane magnetic field.  相似文献   

9.
We have studied both dynamical and static spin conductivities of Heisenberg antiferromagnet on honeycomb lattice in the presence of a magnetic long range ordering. The effects of spatial anisotropy as weak Dzyaloshinskii–Moriya interaction and next nearest neighbor exchange coupling on the behaviors of conductivities are discussed. A sublattice antiferromagnetic long range ordering has been considered for localized electrons on honeycomb lattice structure. Using Holstein–Primakoff bosonic transformations, the behaviors of spin transport properties have been studied by means of excitation spectrum of mapped bosonic gas. We have found the temperature dependence of static spin conductivity in the field induced gapped spin-polarized phase for various Dzyaloshinskii–Moriya interaction strengths. Furthermore we have studied the frequency dependence of dynamical spin conductivity for various Dzyaloshinskii–Moriya interaction strengths and different next nearest neighbor coupling constants. We find that the height of peak in the temperature dependence of static spin conductivity increases upon increasing the anisotropy parameter. The static spin conductivity is found to be monotonically increasing with anisotropy parameter due to increase of the energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of the spin conductivity for different next nearest neighbor coupling constants.  相似文献   

10.
We propose two schemes to produce long-distance entanglement in a spin chain. The first is based on a controllable interaction system, one starts from an entangled kernel and adds weaken interaction spins to the boundary sites step by step, then the entanglement will be extended longer and longer and its value is equal to that of its kernel. The second is based on a uniform interaction (J) system with a bulk magnetic field (B) that is absent for the boundary qubits, as long as B/J 〉 5, one can obtain near perfect long distance entanglement. Ultra-low temperature is needed in both schemes.  相似文献   

11.
We investigate the effect of the environment on a Berry phase measurement involving a spin-half. We model the spin + environment using a biased spin-boson Hamiltonian with a time-dependent magnetic field. We find that, contrary to naive expectations, the Berry phase acquired by the spin can be observed, but only on time scales which are neither too short nor very long. However this Berry phase is not the same as for the isolated spin-half. It does not have a simple geometric interpretation in terms of the adiabatic evolution of either bare spin states or the dressed spin resonances. This result is crucial for proposed Berry phase measurements in superconducting nanocircuits.  相似文献   

12.
The persistent spin helix(PSH) system is considered to have promising applications in energy-conservation spintronics because it supports an extraordinarily long spin lifetime of carriers.Here,we predict that the existence of PSH state in two-dimensional(2 D) ferroelectric NbOI_2 monolayers.Our first-principles calculation results show that there exists Dresselhaus-type spin-orbit coupling(SOC) band splitting near the conduction-band minimum(CBM) of the NbOI_2 monolayer.It is revealed that the spin splitting near CBM merely refers to out-of-plane spin configuration in the wave vector space,which gives rise to a long-lived PSH state that can be controlled by reversible ferroelectric polarization.We believe that the coupling characteristics of ferroelectric polarization and spin texture in NbOI_2 provide a platform for the realization of fully electric controlled spintronic devices.  相似文献   

13.
We show that puzzling recent experimental results on spin diffusion in a strongly interacting atomic gas may be understood in terms of the predicted spin diffusion coefficient for a generic strongly interacting system. Three important features play a central role: (a)?Fick's law for diffusion must be modified to allow for the trapping potential; (b)?the diffusion coefficient is inhomogeneous, due to the density variations in the cloud; and (c)?the diffusion approximation fails in the outer parts of the cloud, where the mean free path is long.  相似文献   

14.
We study, both theoretically and experimentally, driven Rabi oscillations of a single electron spin coupled to a nuclear-spin bath. Because of the long correlation time of the bath, two unusual features are observed in the oscillations. The decay follows a power law, and the oscillations are shifted in phase by a universal value of approximately pi/4. These properties are well understood from a theoretical expression that we derive here in the static limit for the nuclear bath. This improved understanding of the coupled electron-nuclear system is important for future experiments using the electron spin as a qubit.  相似文献   

15.
We study the spin thermalization, i.e., the inter-spin energy relaxation mediated by electron–electron scattering in small spin valves. When one or two of the dimensions of the spin valve spacer are smaller than the thermal coherence length, the direct spin energy exchange rate diverges and needs to be regularized by the sample dimensions. Here we consider two model systems: a long quasi-1D wire and a thin quasi-2D sheet.  相似文献   

16.
We show that spin anisotropy can be transferred to an isotropic system by transport of a spin-quadrupole moment. We derive the quadrupole moment current and continuity equation and study a spin-valve structure consisting of two ferromagnets coupled to a quantum dot probing an impurity spin. The quadrupole backaction on their coupled spin results in spin torques and anisotropic spin relaxation which do not follow from standard spin-current considerations. We demonstrate the detection of the impurity spin by charge transport and its manipulation by electric fields.  相似文献   

17.
We consider a one dimensional ferromagnetic Ising spin system with interactions that correspond to a 1/r 2 long range perturbation of the usual Kac model. We apply a coarse graining procedure widely used for higher-dimensional finite range Kac potentials to describe the basic properties of the system and the relation with the mean field theory.  相似文献   

18.
We investigate the spin squeezing of a 4-qubit state, which is superposed by a 4-qubit GHZ state and two W states with a relative phase. Numerically solution for spin squeezing parameter is given. It is shown that the parameter depends on the superposition coefficients and the relative phase. It is shown that spin squeezing exists over a relatively long time with increasing superposition coefficient γ and the smaller the value of relative phase is, the longer the time of existing spin squeezing.  相似文献   

19.
We propose a scheme to coherently control spin squeezing of atomic Bose-Einstein condensate (BEC) via the technique of electromagnetically induced transparency (EIT). We study quantum dynamics of the mean spin vector and spin squeezing. It is shown that the mean spin vector and spin squeezing of the BEC can be controlled and manipulated by adjusting the external coupling fields or/and internal nonlinear interactions of the BEC. It is indicated that the spin squeezing can be generated rapidly in the dynamical process and maintained in a long time interval. It is found that a larger effective Rabi coupling between atoms and lasers can produce a stronger spin squeezing, and the squeezing can maintain a longer time interval.  相似文献   

20.
We report on electron spin resonance, nuclear magnetic resonance and Overhauser shift experiments on two of the most commonly used III–V semiconductors, GaAs and InP. Localized electron centers in these semiconductors have extended wavefunctions and exhibit strong electron–nuclear hyperfine coupling with the nuclei in their vicinity. These interactions not only play a critical role in electron and nuclear spin relaxation mechanisms, but also result in transfer of spin polarization from the electron spin system to the nuclear spin system. This transfer of polarization, known as dynamic nuclear polarization (DNP), may result in an enhancement of the nuclear spin polarization by several orders of magnitude under suitable conditions. We determine the critical range of doping concentration and temperature conducive to DNP effects by studying these semiconductors with varying doping concentration in a wide temperature range. We show that the electron spin system in undoped InP exhibits electric current-induced spin polarization. This is consistent with model predictions in zinc-blende semiconductors with strong spin–orbit effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号