首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the lagrangian fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with boundary conditions as in Harris' current sheet. The solution shows competition among hydrodynamic convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the magnetic field. A possible application is in the early stage of magnetic star formation.  相似文献   

2.
The magnetic field generation due to the filamentation instability (FI) of a high density current-driven plasma is studied through a new nonlinear diffusion equation. This equation is obtained on the basis of quantum hydrodynamic model and numerically solved by applying the Crank–Nicolson method. The spatiotemporal evolution of the magnetic field and the electron density distribution exhibits the current filament merging as a nonlinear phase of the FI which is responsible for the strong magnetic fields in the current-driven plasmas. It is found that the general behaviour of the FI is the same as that of the classical case but the instability growth rate, its magnitude, and the saturation time are affected by the quantum effects. It is eventually concluded that the quantum effects can play a stabilizing role in such situation.  相似文献   

3.
Equations that simulate the magnetic induction and current density distributions in half-space in view of the power I-V characteristic are derived. The magnetization front velocity is determined for a given mean rate of external magnetic field variation at the boundary of the sample. An integral condition for the electrical resistance (nonlinearly depending on the magnetic field) under which the magnetic flux penetrates into the sample with a finite rate is found. An analytical solution that simulates the power variation of the magnetic field at the boundary is given. The Bean generalized model describing the current density distribution near the critical current is considered. It is shown that solutions like shock waves may arise beyond the applicability domain of the Bean model.  相似文献   

4.
The jump relations for shocks moving into a collision-free anisotropic magnetized plasma are investigated under the assumption of isotropy of the plasma behind the shock front. The plasma ahead of the shock is assumed to be stable against the fire-hose instability and the mirror instability. In order to facilitate comparison with the work of Bazer and Ericson on isotropic shocks our nomenclature has been adapted to theirs. It turns out that as in the case of isotropic shocks the density ratio can be at most four corresponding to γ=5/3, that the change in magnetic field is bounded and that except for the case of Alfvén shocks the transverse parts of the magnetic field are collinear. It is further shown that the influence of the anisotropy is greatest for nearly equal thermal and magnetic energy densities. In the case of negative anisotropy no compressive shocks are possible with a major decrease in magnetic field if the thermal energy density much exceeds the magnetic energy density. A new kind of shock is shown to result from the analysis, the major effect of which is to destroy the anisotropy with only small changes in density, magnetic field and velocity vector. Its propagation speed is unbounded. Furthermore it has turned out that compressive, magnetic field increasing shocks have lower bounds in the density jump and magnetic field change for negative and positive anisotropy, respectively. In the collision-free case no unique entropy condition depending only on the total pressure components and densities can be given before the solution of the problem of shock structure. Therefore even expansive shocks may be admissible. The applicability of the isotropy assumption and ad-hoc-assumptions of other authors are briefly discussed.  相似文献   

5.
The steady-state electric current distribution in a multicathode-spot vacuum arc was determined by a solution of the magnetic transport equation subject to various boundary conditions. The inter-electrode region of the arc is modeled as a uniform plasma flowing from the cathode to the anode. Dimensional analysis shows that three parameters determine the magnetic field, and hence the current density which is derived from it: AR-the ratio of the electrode separation to the electrode radius, Rmm-magnetic Reynolds number of the axial material flow, and Rme-magnetic Reynolds number of the axial electron flow. While the anode side of the conducting medium is described as an equipotential surface, the following three cases of boundary conditions for the cathode side are examined: 1) a known current density distribution is assumed over the entire cathode side of the plasma surface; 2) the cathode side is an equipotential surface; and 3) the current is allowed to cross the cathode surface only through a finite number of ring shaped regions. Numerical solutions of the nonlinear magnetic transport equation show a constriction of the current at the anode side for all boundary conditions mentioned. On the other hand, the current moves to the perimeter of the cathode for boundary condition 2). When AR, Rmm, and Rme equal 0.72,-0.16, and 1.73, respectively, and a uniform current density flows at the cathode side, the on-axis current density at the anode is six times larger than its value at the cathode.  相似文献   

6.
In this paper, we analytically explore the magnetic field and mass density evolutions obtained in particle-in-cell(PIC)and magnetohydrodynamics(MHD) simulations of a rarefied deuterium shell Z-pinch and compare those results, and also we study the effects of artificially increased Spitzer resistivity on the magnetic field evolution and Z-pinch dynamic process in the MHD simulation. There are significant differences between the profiles of mass density in the PIC and MHD simulations before 45 ns of the Z-pinch in this study. However, after the shock formation in the PIC simulation,the mass density profile is similar to that in the MHD simulation in the case of using multiplier 2 to modify the Spitzer resistivity. Compared with the magnetic field profiles of the PIC simulation of the shell, the magnetic field diffusion has still not been sufficiently revealed in the MHD simulation even though their convergence ratios become the same by using larger multipliers in the resistivity. The MHD simulation results suggest that the magnetic field diffusion is greatly enhanced by increasing the Spitzer resistivity used, which, however, causes the implosion characteristic to change from shock compression to weak shock, even shockless evolution, and expedites the expansion of the shell. Too large a multiplier is not suggested to be used to modify the resistivity in some Z-pinch applications, such as the Z-pinch driven inertial confinement fusion(ICF) in a dynamic hohlraum. Two-fluid or Hall MHD model, even the PIC/fluid hybrid simulation would be considered as a suitable physical model when there exist the plasma regions with very low density in the simulated domain.  相似文献   

7.
Trancated equations have been obtained by the Green's functions method for a slowly varying amplitude of a transverse magnetic field component in a paramagnetic layer under conditions of the electron paramagnetic resonance (EPR). A magnetic susceptibiliti of the substence has been found from the Bloch equation for a homogeneously line breadth of the EPR. In a stationary case a solution of a nonlinear boundary-value problem is redused to a solution of two boundary problems for amplitude and phase equations. It is shown that unstable regimes of the electrodynamic system under inves tigation are possible.Electrodynamic characteristics of a nonlinear resonator of the Fabry-Pero type filled with a saturated paramagnetic medium have been analyzed numerically in a non-stationery case.  相似文献   

8.
We consider the first linear diffusion problem in a semiinfinite region with a boundary moving in accordance with a quadratic law. For the case of uniformly decelerating motion of the boundary, the solution of the problem is obtained by the Green's function, method under the most general boundary conditions; the solution of the problem for the case of uniformly accelerated motion of the boundary is obtained by an operator method.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 102–110, December, 1970.  相似文献   

9.
The electromagnetic field induced by shock compression of a current-carrying conductor is shown to consist of two current waves. One propagates in the uncompressed material at the shock-wave velocity. The other is due to current inward diffusion. As the shock wave propagates, the current passes from the first wave to the second. At large observation periods, the situation resembles conventional current diffusion into a conducting half-space. Control parameters for electrodynamic problems with shock waves are found. Their physical meaning is the ratio between the times of field convection and diffusion in different regions. In specific cases, the problem is reduced to the motion of the surface of a current-carrying half-space and to shock metallization of an insulator.  相似文献   

10.
A model is presented which describes the radial distributions of the plasma density, electric potential, current density, and magnetic field in the positive column of a stationary glow discharge not in contact with the longitudinal walls of the discharge chamber. In this model, the compression of the positive column is provided by the azimuthal magnetic field created by the discharge current. The value of, the discharge current is obtained for the case where charged-particle diffusion is balanced by the actions of the radial electric field and the magnetic pinch effect. The radial distributions of plasma parameters are also calculated for the case of high-current glow discharges where charged-particle diffusion can be ignored  相似文献   

11.
The addition of a nonlinear term to the Jaynes-Cummings Hamiltonian induced a nontrivial discrete dynamics for the number of possible transitions of a given order, represented by a Fibonacci series. We describe the physics of the problem in terms of relevant operators which close a semi-Lie algebra under commutation with the Hamiltonian and therefore extending the generalized Bloch equations, already obtained for the linear case, to the nonlinear one. The initial conditions as well as a thermodynamical treatmetn of the problem is analyzed via the maximum entropy principle density operator. Finally, a generalized solution for the time-independent case is obtained and the solution for the field in a thermal state is recovered.  相似文献   

12.
杨显俊 《中国物理》2006,15(7):1539-1543
An analytical scheme on the initial transient process in a simple helical flux compression generator, which includes the distributions of both the magnetic field in the hollow of an armature and the conducting current density in the stator, is developed by means of a diffusion equation. A relationship between frequency of the conducting current, root of the characteristic function of Bessel equation and decay time in the armature is given. The skin depth in the helical stator is calculated and is compared with the approximate one which is widely used in the calculation of magnetic diffusion. Our analytical results are helpful to understanding the mechanism of the loss of magnetic flux in both the armature and stator and to suggesting an optimal design for improving performance of the helical flux compression generator.  相似文献   

13.
A previously developed variational technique for finding the approximate solution to the electromagnetic field inside waveguides of varying shapes and containing non-uniform dielectric and magnetic materials is applied to the specific case of an axisymmetric waveguide containing three layers of different dielectric materials. The magnetic permeability is taken equal to unity. The method enables the problem to be reduced to a two point boundary value problem for a pair of second order, linear, ordinary differential equations. The values of the reflection and transmission coefficients obtained by this method are in good agreement with those derived from solving the partial differential equations for the field.  相似文献   

14.
谢莉  雷银照 《物理学报》2006,55(9):4397-4406
线性瞬态涡流电磁场定解问题的主要特点是边界条件使用磁感应强度的法向分量边界条件代替了电场强度的切向分量边界条件,约束方程中忽略了位移电流.这种具有特殊性的定解问题的解是否唯一和稳定对于求解瞬态涡流电磁场而言是一个基本问题.本文在非涡流区引入标量位函数,证明了在推导过程中起重要作用的辅助函数的存在性.通过推导线性瞬态涡流电磁场定解问题的能量估计式,证明了该定解问题的解是唯一的,并且关于初始条件和外源项是稳定的.本结果对于线性瞬态涡流电磁场的求解有一定的指导意义.作为应用,给出了通有单脉冲电流的单匝圆环线圈与球形导体共轴的涡流问题的解析解. 关键词: 瞬态涡流电磁场 能量估计式 唯一性 稳定性  相似文献   

15.
杨显俊  董志伟  赵强 《计算物理》2006,23(2):127-132
研究了螺线管型爆磁压缩发生器中金属套筒的一维磁扩散模型,分别导出了不同边界条件下的近似解析表达式,分析了瞬态磁场分布的特点,指出了经典趋肤深度计算公式的高频局限性,得出了能够同时反映高频与低频特性的磁场分布与相应趋肤深度的近似解析结果.  相似文献   

16.
In this study, the fundamental problem of the biomagnetic (blood) fluid flow in a channel with stenosis under the influence of a steady localized magnetic field is studied. The mathematical model used for the formulation of the problem is consistent with the principles of ferrohydrodynamics (FHD) and magnetohydrodynamics (MHD). Blood is considered as a homogeneous Newtonian fluid and is treated as an electrically conducting magnetic fluid which also exhibits magnetization. For the numerical solution of the problem, which is described by a coupled, non-linear system of PDEs, with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by the development of an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the development of a semi-implicit numerical technique, transformations and stretching of the grid and proper construction of the boundary conditions for the vorticity. Results concerning the velocity and temperature field, skin friction and rate of heat transfer indicate that the presence of the magnetic field influences the flow field considerably.  相似文献   

17.
The diffusive particle propagation and its pitch angle scattering is studied using kinetic equation of the Fokker-Planck form. The case is considered when charged particles preferable propagate along the strong mean magnetic field direction and undergo the pitch angle scattering with respect to it. The paper deals with solution of the equation for particle distribution function in the second-order approximation in the pitch angle. The exact analytical solution is obtained in an integral form. The well-known solution in the first-order pitch angle approximation can be restored performing the small time limit in the result. Unlike the first-order solution the obtained solution in the second approximation rightly shows that the pitch angle diffusion is closely connected with the particle transport along the mean magnetic field. The expression for particle density for the point instantaneous unidirectional source also has been obtained.  相似文献   

18.
Analytical solutions for the peristaltic flow of a magneto hydrodynamic(MHD) Sisko fluid in a channel, under the effects of strong and weak magnetic fields, are presented. The governing nonlinear problem, for the strong magnetic field,is solved using the matched asymptotic expansion. The solution for the weak magnetic field is obtained using a regular perturbation method. The main observation is the existence of a Hartman boundary layer for the strong magnetic field at the location of the two plates of the channel. The thickness of the Hartmann boundary layer is determined analytically. The effects of a strong magnetic field and the shear thinning parameter of the Sisko fluid on the velocity profile are presented graphically.  相似文献   

19.
20.
本文研究在环形理想导体空腔中极向线电流产生的磁场。在一级环形效应近似下得到的理论结果,基本上与实验数据一致,并且可以推广使用到具有一定类型极向电流分布的情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号