首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetization of a layered high-temperature superconductor with different anisotropy parameters has been calculated using the Monte Carlo method in the framework of a modified three-dimensional Lawrence–Doniach model with actual boundary conditions. The penetration of a magnetic flux into a bulk sample from the boundary has been simulated, and the curves of magnetization reversal of a high-temperature superconductor by an external magnetic field have been calculated for different anisotropy parameters γ and types of defects in the sample. It has been found that there are significant differences in the magnetization curves and transport properties of superconductors with different anisotropy parameters γ. The influence of tilted columnar defects on the critical current has been analyzed. A decreasing dependence of the critical current on the tilt angle of defects with respect to the c axis has been obtained. It has been shown that, as the anisotropy parameter increases, this dependence weakens and, for a specific value of γ, disappears. An explanation of the mechanism responsible for the disappearance of the dependence has been proposed.  相似文献   

2.
The interaction of an Abrikosov vertex with a ferromagnetic substrate is taken into account in the model of a layered high-temperature superconductor (HTSC). The magnetization reversal loops are calculated by the Monte Carlo method for various values of the magnetic moment of the substrate and at various temperatures. The nonlinearity of the interaction of the superconductor with the ferromagnet is demonstrated. The magnetization of HTSC films on magnetic and nonmagnetic substrates is measured. It is found that the ferromagnetism of the substrate strongly affects the shape and magnitude of the magnetization of the HTSC-substrate composite. Experimental data are found to correlate with the results of calculations.  相似文献   

3.
The change in the magnetic domain structure due to the proximity of a superconductor has been experimentally investigated for the first time. The complex character of magnetization reversal at temperatures below critical, caused by the mutual long-range effect of a superconductor and a magnet, has been shown. In particular, it is found that even magnetization reversal of the heterostructure by an in-plane field leads to the formation of Abrikosov vortices in the superconductor, carrying a flux perpendicularly to the film plane. It is shown that this is a consequence of the transformation of narrow domain walls into wide stripes due to the interaction with scattering fields from the superconductor. In turn, after penetration of the magnetic flux into the superconductor at some depth, the scattering fields cause backward magnetization reversal of the external film edge, as a result of which vortices with oppositely directed fluxes enter the crystal and propagate in the superconductor bulk in the form of chains along twins, as in the case of magnetization by a perpendicular magnetic field. Thus, at longitudinal magnetization, the flux enters the superconducting film in the form of wide stripes with alternating perpendicular induction, which is explained by the long-range interaction of the scattering fields of the superconductor with the manganite magnetization.  相似文献   

4.
A new method is developed for numerical simulation of the magnetization of layered superconductors with defects that is based on the Monte Carlo algorithm. The minimization of the free energy functional of a two-dimensional vortex system enables one to obtain equilibrium configurations of vortex density and calculate the magnetization of a superconductor with arbitrary distribution of defects in a wide temperature range. Magnetization curves are obtained for the first time for a defective superconductor under conditions of cyclic variation of the external magnetic field for different temperatures. The magnetic induction profiles and the magnetic flux distribution inside a superconductor are calculated, which support the validity of Bean’s model. It is demonstrated that the process of magnetization reversal is accompanied by the emergence of an annihilation wave, i.e., the motion of a zone with zero magnetic induction at the leading front of the incoming magnetic flux.  相似文献   

5.
The hysteresis loops and the micromagnetic structure of a ferromagnetic nanolayer with a randomly oriented local easy magnetization axis and two-dimensional magnetization correlations are studied using a micromagnetic simulation. The properties and the micromagnetic structure of the nanolayer are determined by the competition between the anisotropy and exchange energies and by the dipole–dipole interaction energy. The magnetic microstructure can be described as an ensemble of stochastic magnetic domains and topological magnetization defects. Dipole–dipole interaction suppresses the formation of topological magnetization defects. The topological defects in the magnetic microstructure can cause a sharper change in the coercive force with the crystallite size than that predicted by the random magnetic anisotropy model.  相似文献   

6.
The impurities of exchange couplings, external magnetic fields and Dzyaloshinskii-Moriya (DM) interaction considered as Gaussian distribution, and the entanglement in one-dimensional random XY spin systems is investigated by the method of solving the different spin-spin correlation functions and the average magnetization per spin. The entanglement dynamics at central locations of ferromagnetic and antiferromagnetic chains have been studied by varying the three impurities and the strength of DM interaction. (i) For the ferromagnetic spin chain, the weak DM interaction can improve the amount of entanglement to a large value, and the impurities have the opposite effect on the entanglement below and above critical DM interaction. (ii) For the antiferromagnetic spin chain, DM interaction can enhance the entanglement to a steady value. Our results imply that DM interaction strength, the impurity and exchange couplings (or magnetic field) play competing roles in enhancing quantum entanglement.  相似文献   

7.
In-plane single domain and vortex magnetization configurations of the magnetic dot in the hybrid superconductor–ferromagnet system are considered. Single domain configuration energy shift due to the presence of superconductor is calculated. The change of the phase curve of the ferromagnetic dot magnetization due to the repulsion of the magnetic field by the superconductor is obtained. Up to the two-fold decrease of the ferromagnetic dot critical radius due to the presence of the superconductor is predicted.  相似文献   

8.
李梅  苏垣昌  胡经国 《计算物理》2012,29(2):285-290
用自旋动力学方法系统地研究磁偶极相互作用表现的边界效应对小尺寸正方形铁磁薄膜的磁化翻转过程的影响.在确定的磁偶极相互作用强度下,针对不同的单轴各向异性强度和不同的磁化角(外磁场与易轴间的夹角),具体给出矫顽场与磁化角及单轴各向异性强度之间的依赖关系和-些有代表性的磁滞回线,并给出磁化翻转过程中-些有代表性的微观磁结构.模拟结果表明:磁偶极相互作用表现的边界钉扎作用与单轴各向异性场之间的竞争决定磁滞回线的形状和矫顽场的大小,从而在不同磁化角情况下会导致不同的矫顽场机理.本文提出可有效地描述正方形铁磁性薄膜复杂微观磁畴结构的形成与演变的五磁畴模型.这种五磁畴模型既能直接揭示单轴各向异性正方形铁磁薄膜的几何特性和物理特性,也方便于磁化翻转过程的分析.  相似文献   

9.
The processes of local magnetization reversal of elliptic Co/Si/Co nanodisks under the action of a nonuniform magnetic field of a magnetic-force microscope (MFM) probe have been investigated. The specific features of the distribution of the phase MFM contrast from particles with ferromagnetic and antiferromagnetic configurations of the magnetic moments in neighboring Co layers have been discussed. It has been shown experimentally that, under the action of the probe field, there occur orientational transitions of two types: transitions from the ferromagnetic configuration to the antiferromagnetic configuration due to the reorientation of the magnetization of the upper layer and transitions in the antiferromagnetic configuration with a change in the orientation of the magnetic moment in both ferromagnetic layers. The presented results of micromagnetic simulation of the processes of transformation of the magnetization in such particles under the action of the MFM probe field explain the main regularities of the magnetization reversal processes.  相似文献   

10.
A novel mechanism is proposed for magnetization reversal by the current of magnetic junctions with two metallic ferromagnetic layers and thin separating nonmagnetic layer. The spin-polarized current flows perpendicularly to the interfaces between the ferromagnetic layers, in one of which the spins are pinned and in the other they are free. No domain structure is formed in the ferromagnetic layers. The current breaks spin equilibrium in the free layer, which manifests itself in the injection or extraction of spins. The nonequilibrium spins interact with the magnetization of the lattice due to the effective field of s-d exchange, which is current dependent. At currents exceeding a certain threshold value, this interaction leads to magnetization reversal. Two threshold currents for magnetization reversal have been obtained theoretically, which are reached as the current increases or decreases, respectively. Thus, the phenomenon of current hysteresis is found. The calculated results are in good agreement with experiments on magnetization reversal by current in three-layer junctions of composition Co(I)/Cu/Co(II) prepared in a pillar form.  相似文献   

11.
X-ray photoemission electron microscopy is used to probe the remnant magnetic domain structure in high quality, single-crystalline, exchange-biased Fe/MnPd bilayers. It is found that the induced unidirectional anisotropy strongly affects the overall magnetic domain structure. Real space images of the ferromagnetic domains provide direct evidence for an asymmetric magnetization reversal process after saturation along the ferromagnetic hard direction. The magnetization reversal occurs by moment rotation for decreasing fields while it proceeds by domain nucleation and growth for increasing fields. The observed domains are consistent with the crystallography of the bilayers and favor a configuration that minimizes the overall magnetostatic energy of the ferromagnetic layer.  相似文献   

12.
The new class of phenomena described in this review is based on the interaction between spatially separated, but closely located ferromagnets and superconductors, the so-called ferromagnet–superconductor hybrids (FSH). Typical FSH are: coupled uniform and textured ferromagnetic and superconducting films, magnetic dots over a superconducting film, magnetic nanowires in a superconducting matrix, etc. The interaction is provided by the magnetic field generated by magnetic textures and supercurrents. The magnetic flux from magnetic structures or topological defects can pin vortices or create them, changing the transport properties and transition temperature of the superconductor. On the other hand, the magnetic field from supercurrents (vortices) strongly interacts with the magnetic subsystem, leading to formation of coupled magnetic–superconducting topological defects.

The proximity of ferromagnetic layer dramatically changes the properties of the superconducting film. The exchange field in ferromagnets not only suppresses the Cooper-pair wavefunction, but also leads to its oscillations, which in turn leads to oscillations of observable values: the transition temperature and Josephson current. In particular, in the ground state of the Josephson junction the relative phase of two superconductors separated by a layer of ferromagnetic metal is equal to?π?instead of the usual zero (the so-called π-junction). Such a junction carries a spontaneous supercurrent and possesses other unusual properties. Theory predicts that rotation of magnetization transforms s-pairing into p-pairing. The latter is not suppressed by the exchange field and serves as a carrier of long-range interaction between superconductors.  相似文献   

13.
The effect of the interaction of Abrikosov vortices with the magnetization on the longitudinal vortical instability in a layered ferromagnet-type-II superconductor structure is analyzed. It is shown that in the vicinity of the orientational phase transition in the magnet, where the transverse magnetic susceptibility is large, the magnitude of the longitudinal critical current in the structure can be almost 1.5 times smaller than in the isolated superconductor. The reason for this is compensation of stray field sources outside the superconductor by “magnetic charges” arising from a jump in the transverse magnetization on the surface of the magnet. A structure is considered in which the thickness of the superconductor significantly exceeds the London penetration depth of the magnetic field and the wavelength of the critical mode. For this reason (in light of the absence of high-quality bulk high-temperature superconductors), to experimentally study the described phenomenon it is necessary to use conventional low-temperature superconductors. Fiz. Tverd. Tela (St. Petersburg) 39, 231–235 (February 1997)  相似文献   

14.
A longitudinal ultrasonic wave in a type-II superconductor with a ferromagnetic subsystem and negligible Hall effect carries the vortex structure in its propagation direction and generates a constant transverse electric (acoustoelectric) field. This field has a maximum in temperature and external magnetic field. The magnitudes and positions of these maxima depend on the magnitude and direction of the internal ferromagnetic moment of the superconductor. It is shown that experimental investigation of the temperature dependence of the acoustoelectric field in a fixed external magnetic field or at a fixed temperature on the external magnetic field strength makes it possible to measure the magnetic moment and magnetic susceptibility of the superconductor ferromagnetic subsystem and the viscosity coefficient of the vortex structure.  相似文献   

15.
The scattering of ferromagnetic magnons by point defects is calculated within the framework of a phenomenological theory. This theory essentially takes account of the magnetic dipole interaction, and the magnetoelastic interaction, which are usually neglected. The scattering is due to an effective magnetic field, which is produced by the longrange strains of the lattice. For small wavenumbers this effective field is more important than the local disturbance of the exchange coupling in the vicinity of the defect, which hitherto has been considered almost exclusively, within the Heisenberg model. Due to the magnetic dipole interaction, the scattered wave and the differential cross section depend on the angle in a rather complicated manner: For each direction of scattering there are up to three groups of scattered waves, running away from the defect with different velocities. The differences between the classical and the quantum mechanical calculation are worked out.  相似文献   

16.
The magnetization reversal of the bilayer polycrystalline FeNi(50 Å)/FeMn(50 Å) film sputtered in a magnetic field has been studied by magnetic and magneto-optical techniques. The external magnetic fields were applied along the easy or hard magnetization axis of the ferromagnetic permalloy layer. The asymmetry of hysteresis loop has been found. Appreciable asymmetry and the exchange bias were observed only in the field applied along the easy axis. The specific features of magnetization reversal were explained within the phenomenological model that involves high-order exchange anisotropy and misalignment of the easy axes of the antiferromagnetic and ferromagnetic layers. It has been shown that the film can exist in one of three equilibrium magnetic states in the field applied along the easy axis. The transitions between these states occur as first-order phase transitions. The observed hysteresis loop asymmetry is related to the existence of the metastable state.  相似文献   

17.
铁磁-p波超导结中的自旋极化隧道谱与散粒噪声   总被引:2,自引:0,他引:2  
考虑到界面的势垒散射和铁磁层中的磁交换作用,依照Sr2RuO4超导体具有自旋三重配对态的p波对称结构,研究铁磁-p波超导结中的自旋极化隧道谱与散粒噪声,研究表明:1.对于幺正配对态,随着铁磁层中磁交换劈裂增强,隧道谱与散粒噪声都减少;2.对于非幺正配对态,隧道谱与散粒噪声都依赖于铁磁层的磁化轴方向,当磁化轴平行于非幺正配对态的自旋轴时,在低偏压下磁交换作用能使隧谱与散粒噪声增强,而当磁化轴反平行于自旋转轴时,其结果相反。  相似文献   

18.
In this paper, the magnetization reversal of the ferromagnetic layers in the IrMn/CoFe/AlOx/CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization processes and reversal mechanism. Thermal activation phenomena such as the training effect, the asymmetry of reversal, the loop broadening and the decrease of exchange field while holding the film at negative saturation have been observed on the hysteresis loops of the pinned ferromagnetic layer while not on those of the free ferromagnetic layer. The thermal activation phenomena observed can be explained by the model of two energy barrier distributions with different time constants.  相似文献   

19.
Ferroelectric transition has been detected in a ferrimagnetic spinel oxide of CoCr2O4 upon the transition to the conical spin order below 25 K. The direction [110] of the spontaneous polarization is normal to both the magnetization easy axis [001] and to the propagation axis [110] of the transverse spiral component, in accord with the prediction based on the spin-current model. The reversal of the spontaneous magnetization by a small magnetic field (approximately 0.1 T) induces the reversal of the spontaneous polarization, indicating the clamping of the ferromagnetic and ferroelectric domain walls.  相似文献   

20.
林虹  钟文定 《物理学报》1985,34(11):1385-1395
本文研究了Sm2(FeNiCoM)17合金(M为非磁性组元)的磁性。样品由六角结构无序型的2∶17主相及少量FeNi合金杂相组成。在六角结构的e轴方向(易磁化方向)观察到下述异常现象:低温(273K以下)时的磁化及反磁化曲线发生明显的跃变,跃变时相应的磁场Hr随温度下降而增大;磁滞迴线是蜂腰型的,温度愈低蜂腰愈明显;升温时磁化强度随温度变化(1.5K至居里点TC)的曲线上出现极大值,其相应的温度Tt随磁场增大而降低;降温时观察到了热磁滞后现象。但在基面(难磁化方向)上及Co含量增多(>18at%)时,样品却表现了正常的铁磁行为。本文提出用磁矩非共线结构排列的自旋再取向相变来解释上述异常现象,并给出自旋倒向所需越过的能垒高度U=9.2×10-15erg,用设想磁结构的模型得到的磁化强度的计算值与实验值也符合得较好。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号