首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A simple field method which allows the determination of fluoride in drinking water with a small handheld instrument called Arsenator was developed. Arsenator is a commercially available instrument which was used successfully for reliable determination of arsenic. In the proposed method the functionality of the Arsenator which is based on a photometric measurement of a spot on the reagent paper is expanded to analyse fluoride. A polymeric aluminium complex of 5-(2-carboxyphenylazo)-8-hydroxyquinoline (LH2) has been prepared as a new specific reagent for fluoride. Job's method of continuous variation was adopted for the determination of the composition of the coloured complex, which was further characterized by UV-VIS spectroscopic studies. The molar absorptivity of the complex formation is 8.48?×?103?L?mol?1?cm?1 at 410?nm. The coloured complex reacts with fluoride on an impregnated paper where its colour changes are dependent on the concentration of fluoride in water samples. The change in the colour was measured using the Arsenator. The method allows a reliable determination of fluoride in the range 0.3 to 2.0?mg?L?1. Further spectophotometric determinations of fluoride in drinking water were also studied. The determination is based on the reaction of aluminium complex with fluoride in the examined samples. Beer's law is obeyed in the range 0.3 to 2.0?mg?L?1 of fluoride at 495?nm. Sensitivity, detection limit and quantitation limit of the method were found to be 0.251?±?0.007?µg?1?mL, 0.1?mg?L?1 and 0.3?mg?L?1, respectively. The optimum reaction conditions and other analytical conditions were evaluated. The effect of interfering ions on the determination is described. There is no interference by nitrate or chloride. Sulphate interfered only at high concentrations which are not expected in drinking water.  相似文献   

2.
An electrochemical method for the determination of carbaryl, after prior oxidation to 1,4-naphthoquinone in natural water and soils is reported. The coulometric oxidation of carbaryl at a platinum electrode was studied using 0.024 mol/L Britton-Robinson buffer (pH 7.0). The reduction of the oxidation product 1,4-naphthoquinone at a dropping mercury electrode was used for the indirect determination of carbaryl after separation on C18 Sep-pak cartridges by differential pulse polarography (detection limits: 0.41 mg L?1 of water and 0.47 mg kg?1 of soil) and directly without separation by adsorptive stripping voltammetry (detection limits: 5 μg L?1 of water and 7 μg kg?1 of soil, for 75 s preconcentration time). Relative errors were lower than 3.7% and relative standard deviations smaller than 4.5%.  相似文献   

3.
A cloud point extraction procedure for pre-concentration and determination of cadmium and lead in drinking water using sequential multi-element flame atomic absorption spectrometry is described. 4-(2-thiazolylazo)-orcinol (TAO) has been used as complexing agent and the micellar phase was obtained using the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) and centrifugation. The conditions for reaction and extraction (surfactant concentration, reagent concentration, effect of incubation time, etc) were studied and the analytical characteristics of the method were determined. The method allows the determination of cadmium and lead with quantification limits of 0.30?µg?L?1 and 2.6?µg?L?1, respectively. A precision expressed as relative standard deviation (RSD, n?=?10) of 2.3% and 2.6% has been obtained for cadmium concentrations of 10?µg?L?1 and 30?µg?L?1, respectively, and RSD of 1.3% and 1.7% for lead concentrations of 10?µg?L?1 and 30?µg?L?1, respectively. The accuracy was confirmed by analysis of a natural water certified reference material. The method has been applied for the determination of cadmium and lead in drinking water samples collected in the cities of Ilhéus and Itabuna, Brazil. Recovery tests have also been performed for some samples, and results varied from 96 to 105% for cadmium and 97 to 106% for lead. The cadmium and lead concentrations found in these samples were always lower than the permissible maximum levels stipulated by World Health Organization and the Brazilian Government.  相似文献   

4.
Polyethylene (PE) and cross-linked polyethylene (PEX) pipes are frequently used in water supply systems. Such pipes contain added antioxidants with phenolic structures, e.g. Irgafos 168, Irganox 1010 and 1076, in order to improve durability. However, phenol, ketone and quinone antioxidant degradation products may leach and enter drinking water. The aim of this investigation was to develop a method for measuring these degradation products with a performance meeting the drinking water quality criteria of 20?µg?L?1. Using headspace solid phase microextraction coupled to a gas chromatograph with a mass spectrometer, a method was established revealing limits of detection and quantification less than 0.4 and 1?µg?L?1 respectively. The method was applied to migration experiments for two PEX pipes and one PE material, quantifying the release of two degradation products. Highest concentrations were observed for 2,6-di-tert-butyl-p-benzoquinone which in one of the two pipes was found in concentrations of 18–57?µg?L?1 in each of eight consecutive release experiments.  相似文献   

5.
This study describes the simultaneous quantification of 56 pesticides in surface coastal water, supported by the development and validation of a gas chromatography (GC)–ion trap (IT) mass spectrometry (MS) method. Samples (500 mL) were pre-concentrated 2500 times by solid phase extraction (OASISTMHLB). The compounds were identified and quantified, within 35 minutes, by GC tandem mass spectrometry (GC-MS/MS) and GC-MS, respectively. The methodology proved to be highly specific for all target pesticides, with an average linearity of 0.99. Detection limits and recovery rates ranged from 0.4 to 1.3 ng L?1 and 71% to 120%, respectively. The performance of the method was checked using water samples collected from nine sampling sites along the Ria Formosa Lagoon Natural Park (south of Portugal, n = 54) in each season (2010). The total annual concentrations of all pesticides in each category (fungicides, herbicides and insecticides) were 1.4, 0.6 and 9.0 µg L?1, respectively. Moreover, 89% of the pesticides tested for were detected, 84% could be quantified and 25% had concentrations above the European recommended levels (2013/39/EU). The highest total loads of pesticides were found in the spring, which is in agreement with their seasonal application. Physicochemical parameters such as, nitrites, nitrates, ammonia and phosphates, also indicate poor water quality, supporting the fact that the Ria Formosa lagoon actually needs an effective monitoring programme for effective preservation of its natural reserve status.  相似文献   

6.
《Analytical letters》2012,45(14):2671-2685
Abstract

A high performance liquid chromatography (HPLC) method with electrochemical detection (ED) was developed for the determination of benzidine, 3,3‐dimethylbenzidine, o‐toluidine and 3,3‐dichlorobenzidine in the wastewater of the textile industry. The aromatic amines were eluted on a reversed phase column Shimadzu Shimpack C18 using acetonitrile+ammonium acetate (1×10?4 mol L?1) at a ratio 46:54 v/v as mobile phase, pumped at a flow rate of 1.0 mL min?1. The electrochemical oxidation of the aromatic amines exhibits well‐defined peaks at a potential range of +0.45 to +0.78 V on a glassy carbon electrode. Optimum working potentials for amperometric detection were from 0.70 V to +1.0 V vs. Ag/AgCl. Analytical curves for all the aromatic amines studied using the best experimental conditions present linear relationship from 1×10?8 mol L?1 to 1.5×10?5 mol L?1, r=0.99965, n=15. Detection limits of 4.5 nM (benzidine), 1.94 nM (o‐toluidine), 7.69 nM (3,3‐dimethylbenzidine), and 5.15 nM (3,3‐dichlorobenzidine) were achieved, respectively. The detection limits were around 10 times lower than that verified for HPLC with ultra violet detection. The applicability of the method was demonstrated by the determination of benzidine in wastewater from the textile industry dealing with an azo dye processing plant.  相似文献   

7.
A simple and fast voltammetric method based on a new electrode composed of carbon paste electrode/bifunctional hybrid ion imprinted polymer (CPE/IIP) was developed for the quantification of Cd2+ in water samples. The voltammetric measurements by Differential Pulse Voltammetry were performed by using CPE containing 11.0 mg of IIP under phosphate buffer solution at concentration 0.1 mol L?1 and pH 6.5. The electrochemical method was carried out by Cd2+ preconcentration at ?1.2 V during 210 s, followed by anodic stripping. The performance of IIP towards Cd2+ determination was evaluated by comparison to non-imprinted polymer, whose detectability of IIP was much higher (45%). The sensitivity of the sensor was found to be 0.0105 µA/µg L?1. The limits of detection and limits of quantification were found to be 4.95 μg L?1 and 16.4 μg L?1, respectively. The developed method was successfully applied to Cd2+ determination in mineral, tap and lake water samples, whose results are in agreement with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) used as reference analytical technique. According to achieved results, the developed method can be used for routine analysis of quality control of water samples from different sources.  相似文献   

8.
An on-line pre-concentration system for the sequential determination of cadmium and lead in drinking water by using fast sequential flame atomic absorption spectrometry (FS-FAAS) is proposed in this paper. Two minicolums of polyurethane foam loaded with 2-(6-methyl-2-benzothiazolylazo)-orcinol (Me-BTAO) were used as sorptive pre-concentration media for cadmium and lead. The analytical procedure involves the quantitative uptake of both analyte species by on-column chelation with Me-BTAO during sample loading followed by sequential elution of the analytes with 1.0?mol?L?1 hydrochloric acid and determination by FS-FAAS. The optimisation of the entire analytical procedure was performed using a Box–Behnken multivariate design utilising the sampling flow rate, sample pH and buffer concentration as experimental variables.

The proposed flow-based method featured detection limits (3σ) of 0.08 and 0.51?µg?L?1 for cadmium and lead, respectively, precision expressed as relative standard deviation (RSD) of 1.63% and 3.87% (n?=?7) for cadmium at the 2.0?µg?L?1 and 10.0?µg?L?1 levels, respectively, and RSD of 6.34% and 3.26% (n?=?7) for lead at the 5.0?µg?L?1 and 30.0?µg?L?1 levels, respectively. The enrichment factors achieved were 38.6 and 30.0 for cadmium and lead, respectively, using a sample volume of 10.0?mL. The sampling frequency was 45 samples per hour. The accuracy was confirmed by analysis of a certified reference material, namely, SRM 1643d (Trace elements in natural water). The optimised method was applied to the determination of cadmium and lead in drinking water samples collected in Santo Amaro da Purificação City, Bahia, Brazil.  相似文献   

9.
This paper describes a new voltammetric procedure for the inorganic speciation of As(III) and As(V) in water samples. The procedure is based on the chemical reduction of arsenate [As(V)] to arsenite [As(III)] followed by the voltammetric determination of total arsenic as As(III) at the hanging mercury drop electrode (HMDE) by adsorptive cathodic stripping voltammetry (AdCSV) in the presence of sodium diethyl dithiocarbamate (SDDC). The reduction step involved the reaction with a mixture of Na2S2O5 and Na2S2O3 in the concentrations 2.5 and 0.5 mg mL?1, respectively, and the sample heating at 80 °C for 45 min. The linear range for the determination of total arsenic as As(III) in the presence of SDDC was between 5 and 150 μg L?1 for a deposition time of 60 s (r=0.992). A detection limit of 1.05 μg L?1 for total As was calculated for the method in water samples using a deposition time of 60 s. The detection limits of 4.2 μg L?1 and 15.0 μg L?1 for total As in seawater and dialysis concentrates, respectively, were calculated using a deposition time of 60 s. The relative standard deviations calculated were 2.5 and 4.0% for five measurements of 20 μg L?1 As(V) as As(III) in water and dialysis concentrates, respectively, after chemical reduction under optimized conditions. The method was applied for the determination of As(III) and total As in samples of dialysis water, mineral water, seawater and dialysis concentrates. Recovery values between 86.0 and 104.0% for As(III) and As(V) added to the samples prove the satisfactory accuracy and applicability of the procedure for the arsenic monitoring.  相似文献   

10.
A novel method is presented for determination of heavy metal ions in a high-saline matrix. It is based on the electrodeposition of the ions and subsequent laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES). Three arrangements for electrodeposition were worked out, two of them with stationary working electrodes. Materials for use in the working electrodes, and conditions for electrodeposition of Cd, Cr and Cu (pH, deposition current, time of electrolysis) were studied. Nickel was found to be the best electrode material. The metals accumulate on the surface of electrode and were then evaporated/ablated with a Nd:YAG laser focused into the ICP-OES spectrometer. The detection limits are 0.13 mg?L?1 for Cd, 0.15 mg?L?1 for Cu, and 1.9 mg?L?1 for Cr in case of a stationary bottom working electrode, and 0.25 mg?L?1 for Cd, 0.05 mg?L?1 for Cu, 0.8 mg?L?1 for Cr when using a rotating electrode. The relative standard deviation is in range from 3.8 to 10.3%. Waste water was analyzed in this way by the standard addition method.  相似文献   

11.
《Analytical letters》2012,45(18):2921-2935
Speciation of Sb(III) and Sb(V) was investigated using hydride generation with the selective formation of stibine from Sb(III). A continuous flow system using a homemade gas-liquid separator with inductively coupled plasma optical emission spectrometry was employed. The conditions and concentrations of NaBH4, HCl, citric acid, and KI were optimized to obtain limits of detection of 0.05 for Sb(III) and 0.11 µg L?1 for total Sb without preconcentration. An attractive sampling rate of 26 analyses h?1 was obtained, suggesting application for routine analysis. The method was employed for the determination of Sb(III) and total Sb in bottled drinking water, and recovery values between 82.0 and 98.8% with relative standard deviation lower than 6.2% were observed, demonstrating appropriate accuracy and precision.  相似文献   

12.
A carbon‐based electrode using multiwall carbon nanotube as a modifier and room temperature ionic liquid as a binder has been applied for the determination of diazepam (DZP) and oxazepam (OZP) in real samples including serum, urine and tablets. Square wave voltammetry as an appropriate electrochemical technique was applied to achieve improved limits of detection and higher sensitivities. The electrochemical studies were investigated under various experimental conditions such as pH, buffer concentration, ionic strength, deposition potential, deposition time and scan rate to achieve higher sensitivities. Linear concentration ranges for DZP and OZP were 0.02–0.76 mg L?1 and 0.05–1.90 mg L?1 with the detection limits of 4.1 µg L?1 and 5.8 µg L?1, respectively. The proposed method was successfully applied for the analysis of commercially available tablets as well as serum and urine samples and satisfactory results were obtained.  相似文献   

13.
Four commonly found pesticides (alachlor, atrazine, metolachlor, and simazine) in surface water were determined using dispersive pipette extraction followed by gas chromatography–mass spectrometry. The rapid mixing and equilibrium between the dispersive pipette extraction adsorbent and water sample resulted in fast and efficient extraction. Using only 5?mL of water sample, the estimated time consumption for extraction of each sample was less than 5?min. Method validation was performed to evaluate accuracy, precision, linearity, the limits of detection, and the limits of quantitation. Average recovery of above 90% was obtained with relative standard deviations below 10%, which indicated good accuracy and precision of the dispersive pipette extraction method. Coefficients of determination were all above 0.9901 and showed good linearity. For the four pesticides studied using the current method, the limits of detection ranged from 7 to 40?ng?L?1, and limits of quantitation were from 20 to 130?ng?L?1. Method validation results supported the application of the current method for drinking water safety monitoring per National Primary Drinking Water Regulations established by the US Environmental Protection Agency. Water samples from Lake Lanier and Stone Mountain Lake (Georgia, USS) were analyzed with this method as a preliminary work for a larger scale drinking water quality study in the future. Trace amounts of simazine and atrazine were found in lake water samples, but both were below the regulation levels of the US Environmental Protection Agency.  相似文献   

14.
A square wave voltammetric procedure for the determination of trace amounts of Fe(III) was developed at an unmodified edge plane pyrolytic graphite (EPPG) electrode and a screen printed electrode (SPE). This simple procedure was applied to real samples of commercially bottled mineral water. Sensitive results in the micromolar region could be achieved without modification of the electrode. Using the WHO guideline limits for the Fe(III) concentration in drinking water, recovery percentages at an EPPG gave 103 % and 107 %, and 98.6 % and 95.0 % at a SPE for the 5.36 µM (0.3 mg L?1) and 53.6 µM (3.0 mg L?1) additions of Fe(III), respectively.  相似文献   

15.
《Analytical letters》2012,45(13):1971-1985
Abstract

Arsenic(V) [As(V)] was reduced to As(0) at pH 0.0 and As(III) at pH 4.5 on a carbon-paste electrode modified with hematite, which allowed their selective determination. Arsenic(V) suffered interference from copper (Cu) and bismuth (Bi). Arsenic(III) was almost free of them. Humic acid did not affect the signal of As(V) but increased the signal of As(III). Arsenic was preconcentrated at ?0.8 V for 100 s. The response was linear up to 70 µg L?1 for As(V) and 50 µg L?1 for As(III). The limits of detection were 2 µg L?1 and 5 µg L?1 respectively. This method was applied to drinking water and compost lixiviate.  相似文献   

16.
This paper describes a rapid and sensitive method for determination of the hair dye Basic Blue 41 in wastewater samples using screen‐printed carbon electrodes modified with graphene (SPCE/Gr). The method is based on the reversible reduction of azo groups of the dye at potential of ?0.23 V/?0.26 V, where both the anodic and cathodic currents increased 1,300 % when compared to screen‐printed carbon (SPCE) and glassy carbon electrodes (GCE). The optimization of a square wave voltammetric method was performed by means of 23 factorial design, Doehlert matrix and multi‐response assays, and the best parameters were: frequency (54.8 Hz), step potential (6 mV), pulse amplitude (43.7 mV) and pH 4.5. The analytical curve was constructed from 3.00×10?8 to 2.01×10?6 mol L?1, with detection and quantification limits of 5.00×10?9 and 1.70×10?8 mol L?1, respectively. The repeatability of the method evaluated for 10 consecutive measurements at concentrations of 1.70×10?7 mol L?1 and 1.70×10?6 mol L?1, showed relative standard deviation of 3.56 and 0.57 %, respectively. The sensor based in SPCE/Gr was successfully applied in wastewater samples collected from a drinking water treatment plant and validated by comparison with HPLC‐DAD method with good accuracy.  相似文献   

17.
A sensitive and accurate method for the determination of two model phenoxy herbicides, 4‐chloro‐2‐methylphenoxy acetic acid and 4‐chloro‐2‐methylphenoxy propanoic acid, in water is explained. This method utilizes a simple phase transfer catalyst‐assisted microextraction with simultaneous derivatization. Factors affecting the performance of this method including pH of the aqueous matrix, temperature, extraction duration, type and amount of derivatization reagents, and type and amount of the phase transfer catalyst are examined. Derivatization and the use of phase transfer catalyst have proven to be especially vital for the resolution of the analytes and their sensitive determination, with an enrichment factor of 288‐fold for catalyzed over noncatalyzed procedure. Good linearity ranging from 0.1 to 80 μg L?1 with correlation of determination (r2) between 0.9890 and 0.9945 were obtained. Previous reported detection limits are compared with our new current method. The low LOD for the two analytes (0.80 ng L?1 for 4‐chloro‐2‐methylphenoxy propanoic acid and 3.04 ng L?1 for 4‐chloro‐2‐methylphenoxy acetic acid) allow for the determination of low concentrations of these analytes in real samples. The absence of matrix effect was confirmed through relative recovery calculations. Application of the method to seawater and tap water samples was tested, but only 4‐chloro‐2‐methylphenoxy propanoic acid at concentrations between 0.27 ± 0.01 and 0.84 ± 0.06 μg L?1 was detected in seawater samples.  相似文献   

18.
Voltammetric methods for estrone determination were developed using a cathodically pretreated BDD electrode with DPV or SWV. Analytical curves were obtained for estrone concentrations from 0.20 or 0.10 to 2.0 µmol L?1, for DPV or SWV, with detection limits of 0.20 and 0.10 µmol L?1, respectively. The SWV method was successfully applied in estrone recovery studies in different water matrices. Additionally, these recovery results were reasonably similar to those attained using HPLC/UV‐vis. Comparatively to other electroanalytical methods based on different carbon electrodes, the here‐reported novel methods yield very good results, being adequate for estrone determination in environmental samples.  相似文献   

19.
As extraction solvents, ionic liquids have green characteristics. In this study, an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL-DLME) combined with ultra-highpressure liquid chromatography (UHPLC)-tunable ultraviolet detection (TUV) was developed for the pre-concentration and determination of triclosan (TCS), triclocarban (TCC) and methyl-triclosan (M-TCS) in water samples. Significant parameters that may affect extraction efficiencies were examined and optimized, including the types and amount of ionic liquids, volume of the diluent, heating temperature, cooling time, salt effect and pH value. Under the optimum conditions, linearity of the method was observed in the ranges of 0.0100–100 μg L?1 for TCS and M-TCS, and 0.00500–50.0 μg L?1 for TCC with correlation coefficients (r 2) > 0.9903. The limits of detection (LODs) ranged from 1.15 to 5.33 ng L?1. TCS in domestic water and TCC in reclaimed water were detected at the concentrations of 1.01 and 0.126 μg L?1, respectively. The spiked recoveries of the three target compounds in reclaimed water, irrigating water, waste water and domestic water samples were obtained in the ranges of 68.4%–71.9%, 61.6%–87.8%, 58.9%–74.9% and 64.9%–92.4%, respectively. Compared with the previous dispersive liquid-liquid microextraction method (DLLME) about the determination of TCS, TCC and M-TCS, this method is not only more environmentally friendly but also more sensitive.  相似文献   

20.
A cellulose–graphite oxide composite was synthesized and characterized as an adsorbent for dispersive solid-phase extraction of rhodium from various samples before atomic absorption detection. The pH, adsorbent volume, centrifugation time and rate, eluent concentration, volume and type, adsorption and elution contact time, sample volume, and matrix interferences were optimized. The developed method is simple, rapid, and inexpensive. The tolerance limits for rhodium were 10,000?mg?L?1 sodium, 25,000?mg?L?1 potassium, 10,000?mg?L?1 magnesium, and 20,000?mg?L?1 calcium. The recovery for rhodium exceeded 95%. Elution was performed with 10?mL of 2.5?mol?L?1 H2SO4. The adsorption and elution contact times were 30 and 60?s, respectively. The detection limit of the method for rhodium was 5.4?µg?L?1 and the precision as the relative standard deviation was 1.6%. A certified reference material 2556 (used auto catalyst pellets) and fortified samples were analyzed to evaluate the accuracy of the method. The optimized method was used for the preconcentration of rhodium from tap water, well water, wastewater, seawater, catalytic converters, and street dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号