首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterodinuclear [(Ni (II)L)Ln (III)(hfac) 2(EtOH)] (H 3L = 1,1,1-tris[(salicylideneamino)methyl]ethane; Ln = Eu, Gd, Tb, and Dy; hfac = hexafluoroacetylacetonate) complexes ( 1.Ln) were prepared by treating [Ni(H 1.5L)]Cl 0.5 ( 1) with [Ln(hfac) 3(H 2O) 2] and triethylamine in ethanol (1:1:1). All 1.Ln complexes ( 1.Eu, 1.Gd, 1.Tb, and 1.Dy) crystallized in the triclinic space group P1 (No. 2) with Z = 2 with very similar structures. Each complex is a face-sharing dinuclear molecule. The Ni (II) ion is coordinated by the L (3-) ligand in a N 3O 3 coordination sphere, and the three phenolate oxygen atoms coordinate to an Ln (III) ion as bridging atoms. The Ln (III) ion is eight-coordinate, with four oxygen atoms of two hfac (-)'s, three phenolate oxygen atoms of L (3-), and one ethanol oxygen atom coordinated. Temperature-dependent magnetic susceptibility and field-dependent magnetization measurements showed a ferromagnetic interaction between Ni (II) and Gd (III) in 1.Gd. The Ni (II)-Ln (III) magnetic interactions in 1.Eu, 1.Tb, and 1.Dy were evaluated by comparing their magnetic susceptibilities with those of the isostructural Zn (II)-Ln (III) complexes, [(ZnL)Ln(hfac) 2(EtOH)] ( 2.Ln) containing a diamagnetic Zn (II) ion. A ferromagnetic interaction was indicated in 1.Tb and 1.Dy, while the interaction between Ni (II) and Eu (III) was negligible in 1.Eu. The magnetic behaviors of 1.Dy and 2.Dy were analyzed theoretically to give insight into the sublevel structures of the Dy (III) ion and its coupling with Ni (II). Frequency dependence in the ac susceptibility signals was observed in 1.Dy.  相似文献   

2.
A novel heterodinuclear complex formed by the reaction of gadolinium nitrate with Schiff base complex of copper(II) has been synthesized and characterized. Preparation, crystal structure and magnetic properties of the heterodinuclear complex, LCu(Me2CO)Gd(NO3)3, (L=(N,N′-bis(2,3-dihydroxybenzylidene)-1,3-diaminopropane) are reported. The complex is consisting of a deca-coordinated GdIII ion which is bridged to four coordinated CuII via both phenolate oxygen atoms of the L Schiff base ligand. The average CuGd separation is 3.475(2) Å. There is also one non-coordinating acetone molecule in the crystal structure. The magnetic susceptibility of the complex was measured over the range 4.5–350 K and the observed data were successfully simulated by the equation based on the spin-Hamiltonian operator H=−JSCu·SGd. The values of the intrachain interaction parameters have been deduced from the magnetic data: exchange integral J(Cu–Gd)=7.3 cm−1, gCu=2.17, gGd=2.09. This indicates a weak ferromagnetic spin exchange interaction between CuII and GdIII ions. The nature of the magnetic super-exchange interaction of the title compound is compared with similar CuIIGdIII heterodinuclear complexes.  相似文献   

3.
Rare-earth complexes of the general formula [Ln(H2L1)2(NO3)3] [Ln = Gd (1), Ho (2) or Nd (3)] were prepared from an o-vanillin derived Schiff base ligand, 2-((E)-(1-hydroxy-2-methylpropan-2-ylimino)methyl)-6-methoxyphenol (H2L1). The single-crystal X-ray diffraction studies and SHAPE analyses of the Gd(III) and Ho(III) complexes show that the complexes are ten-coordinate and exhibit distorted tetradecahedron geometries. The phenolate oxygen-bridged dinuclear complex, [Ce2(H2L1)(ovan)3(NO3)3] (4, ovan = monodeprotonated o-vanillin), was obtained from the reaction of Ce(NO3)3?6H2O with H2L1. X-ray analysis revealed that hydrolysis of H2L1 occurred to yield o-vanillin, which bridged two cerium atoms with the Ce?Ce distance equal to 3.8232(6) Å. The Ce(III) ions are both ten-coordinate, but have different coordination environments, showing tetradecahedron and staggered dodecahedron geometries, respectively. With proton migration occurring from the phenol group to the imine function, complexation of the lanthanides to the ligand gives the Schiff base a zwitterionic phenoxo-iminium form.  相似文献   

4.
The new solid complexes [LnL2(NO3)2]NO3 (L=C18H23NO2, N-2-hydroxy-3-methoxy-benzaldehyde-1-aminoadamanantane, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) of rare earth nitrates with Schiff base derived from o-vanillin and adamantaneamine have been synthesized in non-aqueous system and characterized by elemental analysis, molar conductance, infrared spectra, 1H NMR spectra, thermal analysis. The coordination modes of the bonding in these complexes were discussed and the possible structure were proposed. Every central Ln(Ⅲ) ion in the complexes coordinates with both two Schiff base ligands via four oxygen atoms of the phenol hydroxy groups and methoxy groups and two nitrates via their four oxygen atoms. Their coordination numbers are eight. In addition, the antibacterial activity of the Schiff base ligand and the complexes were studied.  相似文献   

5.
Eight new lanthanide metal complexes [LnL(NO(3))(2)]NO(3) {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand} were prepared. These complexes were characterized by elemental analysis, thermogravimetric analysis (TGA), molar conductivity measurements and spectral studies ((1)H NMR, FT-IR, UV-vis, and luminescence). The Schiff base ligand coordinates to Ln(III) ion in a tetra-dentate manner through the phenolic oxygen and azomethine nitrogen atoms. The coordination number of eight is achieved by involving two bi-dentate nitrate groups in the coordination sphere. Sm, Tb and Dy complexes exhibit the characteristic luminescence emissions of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of the complexes exhibit antibacterial activity against a number of pathogenic bacteria.  相似文献   

6.
A dinuclear gadolinium(III) complex of an amphiphilic chelating ligand, containing two diethylenetriamine-N,N,N',N',N'-pentaacetate (DTPA) moieties bridged by a bisindole derivative with three methoxy groups, has been synthesized and evaluated as a potential magnetic resonance imaging (MRI) contrast agent. Nuclear magnetic relaxation dispersion (NMRD) measurements indicate that at 20 MHz and 37 degrees C the dinuclear gadolinium(III) complex has a much higher relaxivity than [Gd(DTPA)] (6.8 vs 3.9 s(-1) mmol(-1)). The higher relaxivity of the dinuclear gadolinium(III) complex can be related to its reduced motion and larger rotational correlation time relative to [Gd(DTPA)]. In the presence of human serum albumin (HSA) the relaxivity value of the noncovalently bound dinuclear complex increases to 15.2 s(-1) per mmol of Gd3+, due to its relatively strong interaction with this protein. The fitted value of the binding constant to HSA (Ka) was found to be 10(4) M(-1). Because of its interaction with HSA, the dinuclear complex exhibits a longer elimination half-life from the plasma, and a better confinement to the vascular space compared to the commercially available [Gd(DTPA)] contrast agent. Transmetalation of the dinuclear gadolinium(III) complex by zinc(II) has been investigated. Biodistribution studies suggest that the complex is excreted by the renal pathway, and possibly by the hepatobiliary route. In vivo studies indicated that half of the normal dose of the gadolinium(III) complex enhanced the contrast in hepatic tissues around 40 % more effectively than [Gd(DTPA)]. The dinuclear gadolinium(III) complex was tested as a potential necrosis avid contrast agent (NACA), but despite the binding to HSA, it did not exhibit necrosis avidity, implying that binding to albumin is not a key parameter for necrosis-targeting properties.  相似文献   

7.
The synthesis and characterisation of an asymmetric dinuclear gadolinium(III) semiquinonato complex, namely [Gd2(HBPz3)2(dtbsq)4] CHCl3 (1; HBPz3 = hydrotris(pyrazolyl)borate, dtbsq = 3,5-di-tert-butyl-O-semiquinone), is reported. The crystal structure of 1 was determined at room temperature. It crystallises in the triclinic system P1, with a = 16.735(5) A, b = 17.705(5) A, c = 19.553(5) A, alpha = 99.680(5) degrees, beta = 109.960(5), gamma = 107.350(5) degrees, Z = 2 and R = 9.96. The structure of 1 consists of a dinuclear asymmetric unit in which the two gadolinium(III) ions have coordination numbers of eight and nine. Three of the dioxolene molecules act as asymmetric bridging ligands, while the fourth molecule behaves as a bidentate ligand towards a single metal ion. The magnetic properties of 1 were investigated by means of susceptibility measurements and high-field electron paramagnetic resonance (HF-EPR) spectroscopy. They revealed an S = 0 ground spin state with excited states of higher spin very close in energy and a small negative zero-field splitting with a transverse anisotropy term for a S = 7 state.  相似文献   

8.
余玉叶 《化学研究》2006,17(1):16-19
合成了双水杨醛缩1,10-癸二胺Sch iff碱配体(C24H32N2O2,以L表示)与稀土Ln3+的15种新的固体配合物[LnL(NO3)3].nH2O(Ln=La,Ce,Pr,Nd,Sm,Eu,n=0;Ln=Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y,n=1).利用元素分析、摩尔电导、红外光谱、热分析等方法进行表征.中心金属离子Ln3+与Sch iff碱配体中的酚羟基氧以及硝酸根中的氧发生配位,配位数为8.  相似文献   

9.
The reaction of LH3 with Ni(ClO4)(2).6H 2O and lanthanide salts in a 2:2:1 ratio in the presence of triethylamine leads to the formation of the trinuclear complexes [L2Ni2Ln][ClO4] (Ln=La (2), Ce (3), Pr (4), Nd (5), Sm (6), Eu (7), Gd (8), Tb (9), Dy (10), Ho (11) and Er (12) and L: (S)P[N(Me)NCH-C6H3-2-O-3-OMe]3). The cationic portion of these complexes consists of three metal ions that are arranged in a linear manner. The two terminal nickel(II) ions are coordinated by imino and phenolate oxygen atoms (3N, 3O), whereas the central lanthanide ion is bound to the phenolate and methoxy oxygen atoms (12O). The Ni-Ni separations in these complexes range from 6.84 to 6.48 A. The Ni-Ni, Ni-Ln and Ln-O phenolate bond distances in 2-12 show a gradual reduction proceeding from 2 to 12 in accordance with lanthanide contraction. Whereas all of the compounds (2-12) are paramagnetic systems, 8 displays a remarkable ST=(11)/2 ground state induced by an intramolecular Ni. . .Gd ferromagnetic interaction, and 10 is a new mixed metal 3d/4f single-molecule magnet generated by the high-spin ground state of the complex and the magnetic anisotropy brought by the dysprosium(III) metal ion.  相似文献   

10.
Reactions of gadolinium atoms and dimers with carbon monoxide molecules in solid argon have been studied using matrix isolation infrared absorption spectroscopy. Mononuclear Gd(CO)x (x = 1-3) and dinuclear Gd2(CO)x (x = 1, 2) gadolinium carbonyls formed spontaneously on annealing. The Gd(CO)x complexes are CO terminal-bonded carbonyls, whereas the Gd2CO and Gd2(CO)2 carbonyl complexes were characterized to have asymmetrically bridging and side-on-bonded CO, which are drastically activated with remarkably low C-O stretching frequencies. The cyclic Gd2(mu-C)(mu-O) and Gd3(mu-C)(mu-O) molecules in which the C-O triple bond is completely cleaved were also formed on annealing. The Gd2(CO)2 complex rearranged to the more stable c-Gd2(mu-O)(mu-CCO) isomer, which also has a four-membered ring structure with one CO being completely activated.  相似文献   

11.
Ni(II), Cu(II), and Zn(II) complexes with bidentate Schiff bases derived from the condensation reaction of 5-chlorosalicylaldehyde, 5-nitrosalicylaldehyde, and 3,5 ditertiarybutyl-2-hydroxy benzaldehyde with tryptamine, have been reported. The ligands and complexes were characterized by elemental analysis, IR, 1H NMR and UV–Vis spectroscopy as well as single crystal X-ray structure analysis whenever possible. The complexes were found to have the general formula [M(L)2]. Spectral studies reveal that these Schiff bases were acting as bidentate ligands and co-ordinating to the metal center through deprotonated phenolate oxygen and azomethine nitrogen atoms. The Zn(II) complexes establish a tetrahedral geometry in a 1:2 metal to ligand stoichiometry, whereas a square planar geometry was proposed for the nickel and copper complexes, slightly distorted in the case of the latter.The antiulcer activity of 5-chlorosalicylaldehyde derivative and its nickel and copper complexes were evaluated in ethanol-induced gastric mucosal injury in rats. This Schiff base and its complexes promote ulcer protection as ascertained by the comparative decrease in ulcer areas, and inhibition of edema and leucocyte infiltration of the submucosal layer.  相似文献   

12.
Hou H  Li G  Li L  Zhu Y  Meng X  Fan Y 《Inorganic chemistry》2003,42(2):428-435
Three novel ferrocenecarboxylato-bridged lanthanide dimers [Gd2(mu 2-OOCFc)2(OOCFc)4(MeOH)2(H2O)2].2MeOH.2H2O (1) (Fc = (eta 5-C5H5)Fe(eta 5-C5H4)), [Nd2(mu 2-OOCFc)2(OOCFc)4(H2O)4].2MeOH.H2O (2), and [Y2(mu 2-OOCFc)2-(OOCFc)4(H2O)4].2MeOH (3) have been synthesized and characterized by single-crystal X-ray crystallography. In each complex, two Ln(III) (Ln = Gd, Nd, or Y) ions are bridged by two ferrocenecarboxylate anions as asymmetrically bridging ligands, leading to dimeric cores, [Ln2(mu 2-OOCFc)2]; each Ln(III) ion has an irregular polyhedral coordination environment with nine coordinated oxygen atoms derived from the ferrocenecarboxylate ligands and coordinated solvent molecules. In the solid-state structure of compound 1, [Gd2(mu 2-OOCFc)2(OOCFc)4(MeOH)2(H2O)2] groups are joined together by hydrogen bonds forming a two-dimensional network. Both compounds 2 and 3 show one-dimensional chain structures by hydrogen bonding; they are different from 1. Magnetic measurements show unexpected ferromagnetic coupling between the gadolinium(III) ions; the best fittings to the experimental magnetic susceptibilities gave J = 0.006 cm-1 and g = 2.0 for 1. The magnetic behavior for 2 was also studied in the temperature range of 1.8-300 K.  相似文献   

13.
Four gadolinium(III) complexes with dicarboxylate ligands of formulas [Gd2(mal)3(H2O)5]n.2nH2O (1), [Gd2(mal)3(H2O)6]n (2), [NaGd(mal)(ox)(H2O)3]n (3), and [Gd2(ox)3(H2O)6]n.2.5nH2O (4) (mal = malonate; ox = oxalate) have been prepared, and their magnetic properties have been investigated as a function of the temperature. The structures of 1-3 have been determined by X-ray diffraction methods. The crystal structure of 4 was already known, and it is made of hexagonal layers of Gd atoms that are bridged by bis-bidentate oxalate. Compound 1 is isostructural with the europium(III) malonate complex [Eu2(mal)3(H2O)5]n.2nH2O,1 whose structure was reported elsewhere. The Gd atoms in 1 define a two-dimensional network where a terminal bidentate and bridging bidentate/bis-monodentate and tris-bidentate coordination modes of malonate occur. Compound 2 has a three-dimensional structure with a structural phase transition at 226 K, which involves a change of the space group from I2/a to Ia. Although its structure at room temperature was already known, that below 226 K was not. Pairs of Gd atoms with a double oxo-carboxylate bridge occur in both phases, and the main differences between both structures deal with the Gd environment and the H-bond pattern. 3 is also a three-dimensional compound, and it was obtained by reacting Gd(III) ions with malonic acid in a silica gel medium. Oxalic acid results as an oxidized product of the malonic acid, and single crystals of the heteroleptic complex were produced. The Gd atoms in 3 are connected through bis-bidentate oxalate and carboxylate-malonate bridges in the anti-anti and anti-syn coordination modes. Compounds 1 and 2 exhibit weak but significant ferromagnetic couplings between the Gd(III) ions through the single (1) and double (2) oxo-carboxylate bridges, whereas antiferromagnetic interactions across the bis-bidentate oxalate account for the overall antiferromagnetic behavior observed in 3 and 4.  相似文献   

14.
Ye BH  Li XY  Williams ID  Chen XM 《Inorganic chemistry》2002,41(24):6426-6431
Two di- and a tetranuclear zinc-carboxylate complexes with different coordination modes, [Zn(2)L(mu(1,3)-OAc)(2)](ClO(4)) (1), [Zn(2)L(mu(1,3)-Pro)(2)](ClO(4)) (2), and [Zn(2)L(mu(1,1)-HCO(2))(mu(1,3)-HCO(2))](2)(ClO(4))(2) (3) (where L = 2,6-bis(N-2-(2'-pyridylethyl)formimidoyl)-4-methylphenol, OAc = acetate, and Pro = propionate) have been synthesized. Their compositions and structures have been identified by elemental analyses, IR, NMR, and X-ray single-crystal diffraction. The cations in both 1 and 2 reveal that the two zinc ions are assembled by a phenolate and a pair of syn-syn mu(1,3)-carboxylate bridges with metal-metal distances of 3.281 and 3.331 A, respectively, and each polyhedron around the zinc ion is a slightly distorted trigonal bipyramid. Compound 3 is a tetranuclear complex consisting of two identical dinuclear subunits that connect to each other by the two formate groups. In each subunit, the pair of metal ions separated at 3.130(1) A is assembled by a phenolate oxygen from L, and a monodentate and a syn-syn bidentate formate bridges. The formate group displays a novel tridentate mode, namely, monodentate and syn-anti bidentate bridges. On the other hand, the solid-state (13)C NMR technique was employed to distinguish the different binding modes of acetate group in five-coordinate zinc complexes. The chemical shifts are as follows: chelating mode (ca. 184 ppm) > bidentate bridge (ca. 180 ppm) > monodentate bridge (ca. 176 ppm).  相似文献   

15.
Synthesis and Structure of a Binuclear Gadolinium(III) Complex: Magnetic Exchange Interactions in Alkoxy Bridged Lanthanide Complexes The Schiff Base ligand N-salicylidene-2-(bis-(2-hydroxyethyl)amino)ethylamine (H3sabhea) reacts with Gd(NO3)3 · 6 H2O in methanol solution to yield the alkoxy bridged binuclear gadolinium(III) complex [{Gd(Hsabhea)(NO3)}2] · 2MeOH ( 1 ). 1 crystallizes in the monoclinic space group P21/c with a = 1014.8(2), b = 2059.2(4), c = 867.5(2) pm, β = 106.72(2)°, and Z = 2. The two gadolinium atoms are bridged by two alkoxide oxygen atoms with angles of 107.60(11)° at the oxygen bridgeheads and a Gd? Gd separation of 376.43(7) pm. A variable-temperature magnetic susceptibility study (2 to 280 K) of 1 revealed an antiferromagnetic coupling between the Gd(III) ions with J = ?0.198 cm?1 (g = 1.975).  相似文献   

16.
A novel tetradentate azo‐Schiff base ligand (H2L) was synthesized by 2:1 molar condensation of an azo‐aldehyde and ethylenediamine. Its mononuclear Cu(II), Ni(II), Co(II) and Zn(II) complexes were prepared and their structures were confirmed using elemental analysis, NMR, infrared and UV–visible spectroscopies and molar conductivity measurements. The results suggest that the metal ion is bonded to the tetradentate ligand through phenolic oxygens and imine nitrogens of the ligand. The solid‐state structures of the azo‐Schiff base ligand and its Cu(II) complex were determined using single‐crystal X‐ray diffraction studies. The azo‐Schiff base ligand lies on a crystallographic inversion centre and thus the asymmetric unit contains half of the molecule. X‐ray data revealed that keto–amine tautomer is favoured in the solid‐state structure of the ligand. In the structure of the Cu(II) complex, the Cu(II) ion is coordinated to two phenolate oxygen atoms and two imine nitrogen atoms of the azo‐Schiff base ligand with approximate square planar geometry. The anticancer activity of the synthesized complexes was investigated for human cancer cell line (MCF‐7) and cytotoxicity of the synthesized compounds was determined against mouse fibroblast cells (L929). The ligand and its complexes were found to show antitumor activity. The synthesized metal complexes were optimized at the B3LYP/LANL2DZ level and a new theoretical formula for MCF‐7 cells was also derived.  相似文献   

17.
Our previously defined Sparkle model (Inorg. Chem. 2004, 43, 2346) has been reparameterized for Eu(III) as well as newly parameterized for Gd(III) and Tb(III). The parameterizations have been carried out in a much more extensive manner, aimed at producing a new, more accurate model called Sparkle/AM1, mainly for the vast majority of all Eu(III), Gd(III), and Tb(III) complexes, which possess oxygen or nitrogen as coordinating atoms. All such complexes, which comprise 80% of all geometries present in the Cambridge Structural Database for each of the three ions, were classified into seven groups. These were regarded as a "basis" of chemical ambiance around a lanthanide, which could span the various types of ligand environments the lanthanide ion could be subjected to in any arbitrary complex where the lanthanide ion is coordinated to nitrogen or oxygen atoms. From these seven groups, 15 complexes were selected, which were defined as the parameterization set and then were used with a numerical multidimensional nonlinear optimization to find the best parameter set for reproducing chemical properties. The new parameterizations yielded an unsigned mean error for all interatomic distances between the Eu(III) ion and the ligand atoms of the first sphere of coordination (for the 96 complexes considered in the present paper) of 0.09 A, an improvement over the value of 0.28 A for the previous model and the value of 0.68 A for the first model (Chem. Phys. Lett. 1994, 227, 349). Similar accuracies have been achieved for Gd(III) (0.07 A, 70 complexes) and Tb(III) (0.07 A, 42 complexes). Qualitative improvements have been obtained as well; nitrates now coordinate correctly as bidentate ligands. The results, therefore, indicate that Eu(III), Gd(III), and Tb(III) Sparkle/AM1 calculations possess geometry prediction accuracies for lanthanide complexes with oxygen or nitrogen atoms in the coordination polyhedron that are competitive with present day ab initio/effective core potential calculations, while being hundreds of times faster.  相似文献   

18.
The gadolinium nitrato complex with α-furancarboxylic acid (FA) and 2,2′-dipyridyl (Dipy) has been synthesized. According to X-ray diffraction results, the complex is composed of the [Gd(FA)2(NO3)(Dipy)]2 dimers. The crystals are triclinic: a = 9.942(2) Å, b = 10.231(2) Å, c = 11.037(2) Å, α = 85.50(3)°, β = 75.71(3)°, γ = 69.82(3)°, Z = 1. Two gadolinium atoms are linked by four carboxylate groups of furancarboxylic acid molecules. Each gadolinium atom is coordinated to seven oxygen atoms (five belonging to the FA carboxyl groups and two belonging to the bidentate nitrate group) and to two nitrogen atoms (from Dipy).  相似文献   

19.
《Electroanalysis》2004,16(12):973-978
An ion selective electrode based on the dinuclear complex formed by two zinc(II) ions and two molecules of the bis‐N,O‐bidentate Schiff base 2,2′‐[methylenebis(4,1‐phenylenenitrilomethylidyne)]bisphenol exhibits thiocyanate selectivity with a good discrimination of nitrite, nitrate, and azide. The selectivities of electrode membranes with various compositions indicate that this potentiometric selectivity is based on the formation of a 1 : 1 complex between the thiocyanate anion and the dinuclear ionophore. The 2 : 1 ratio of thiocyanate ions and the dinuclear ionophore that results from higher ratios of cationic sites and ionophore worsens the selectivity, suggesting that binding of a thiocyanate to both zinc(II) centers of the dinuclear ionophore is not favorable. Interestingly, the selectivity patterns of these electrodes differ radically from that of a highly sulfate selective electrode based on a compound reported previously to be the analogous mononuclear 1 : 1 complex of zinc(II) and the same Schiff base. It is suggested that the previously reported 1 : 1 complex with zinc(II) may indeed have been a polymer of the same elemental composition.  相似文献   

20.
Lü Z  Yuan M  Pan F  Gao S  Zhang D  Zhu D 《Inorganic chemistry》2006,45(9):3538-3548
Tetradentate Schiff base ligands H2L (H2saltmen, H2salen, H2-5-Brsalen, and H2-3,5-Brsalen), derived from the condensation of the corresponding salicylaldehyde or its derivatives with 1,1,2,2-tetramethylethyldiamine or 1, 2-diaminoethane, reacted with Mn(III) acetate or perchlorate salts and sodium azide or sodium cyanate to produce five Mn(III) dimer complexes, [Mn(saltmen)(O2CCH3)]2.2CH3CO2H (1), [Mn(saltmen)(N3)]2 (2), [Mn(salen)(NCO)]2 (3), [Mn(3,5-Brsalen)(3,5-Brsalicylaldehyde)]2 (4), and [Mn(5-Brsalen)(CH3OH)]2(ClO4)2 (5). These new complexes have been characterized by IR, elemental analyses, crystal structural analyses, and magnetic studies. Within these Mn(III) dimeric complexes, two Mn(III) ions are connected by phenolate oxygen atoms with acetate, azide, cyanate, a 3,5-Brsalicyladehyde anion, and a neutral methanol molecule as the axial ligands for complexes 1-5, respectively. Complexes 1-4 exhibit intradimer ferromagnetic exchange and display frequency dependence of ac magnetic susceptibility, possibly showing single-molecule-magnet (SMM) behavior. In contrast, complex 5 shows an intradimer antiferromagnetic coupling probably originating from the relatively shorter Mn-O distance, compared to those of complexes 1-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号