首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By preparing ethylene [C2H4(X1Ag)] in selected rotational levels of the nu11(b1u), nu2+nu12(b1u), or nu9(b2u) vibrational state with infrared (IR) laser photoexcitation prior to vacuum ultraviolet (VUV) laser photoionization, we have recorded rotationally resolved pulsed field ionization-photoelectron (PFI-PE) spectra for C2H4+(X2B3u) in the energy region of 0-3000 cm(-1) above the ionization energy (IE) of C2H4(X1Ag). Here, nu2(ag), nu9(b2u), nu11(b1u), and nu12(b1u) represent the C-C stretching, CH2 stretching, CH2 stretching, and CH2 bending modes of C2H4(X1Ag), respectively. The fully rovibrationally resolved spectra have allowed unambiguous symmetry assignments of the observed vibrational bands, which in turn have provided valuable information on the photoionization dynamics of C2H4. The IR-VUV photoionization of C2H4(X1Ag) via the nu11(b1u) or nu2+nu12(b1u) vibrational states is found to predominantly produce vibrational states of C2H4+(X2B3u) with b1u symmetry, which cannot be observed in single-photon VUV-PFI-PE measurements of C2H4(X1Ag). The analysis of the observed IR-VUV-PFI-PE bands has provided the IE(C2H4) = 84,790.2(2) cm(-1) and accurate vibrational frequencies for the nu4+(au)[84.1(2) cm(-1)], nu12+(b1u)[1411.7(2) cm(-1)], nu4+ +nu12+(b1g)[1482.5(2) cm(-1)], nu2+(ag)[1488.3(2) cm(-1)], nu2+ + nu4+(au)[1559.2(2) cm(-1)], 2nu4+ + nu12 +(b1u)[1848.5(2) cm(-1)], 4nu4+ + nu12 +(b1u)[2558.8(2) cm(-1)], nu2+ + nu12 +(b1u)[2872.7(2) cm(-1)], and nu11+(b1u)[2978.7(2) cm(-1)] vibrational states of C2H4+(X2B3u), where nu4+ is the ion torsional state. The IE(C2H4) and the nu4+(au), nu2+(ag), and nu2+ + nu4+ (au) frequencies are in excellent accord with those obtained in previous single-photon VUV-PFI-PE measurements. The other ion vibrational frequencies represent new experimental determinations. We have also performed high-level ab initio anharmonic vibrational frequency calculations for C2H4(X1Ag) and C2H4+(X2B3u) at the CCSD(T)/aug-cc-pVQZ level for guidance in the assignment of the IR-VUV-PFI-PE spectra. All theoretical vibrational frequencies for the neutral and ion, except the ion torsional frequency, are found to agree with experimental vibrational frequencies to better than 1%.  相似文献   

2.
The bis(PNP)-donor pincer ligand 1,4-C(6)H(4){N(CH(2)CH(2)PPh(2))(2)}(2), 1, contains weakly basic nitrogen donor atoms because the lone pairs of electrons are conjugated to the bridging phenylene group, and this feature is used in the synthesis of oligomers and polymers. The complexes [Pd(2)X(2)(mu-1)](OTf)(2), X=Cl, Br or OTf, contain the ligand 1 in bis(pincer) binding mode (mu-kappa(6)-P(4)N(2)), but [Pd(4)Cl(6)(mu(3-)1)(2)]Cl(2) contains the ligand in an unusual unsymmetrical mu(3)-kappa(5)-P(4)N binding mode. The bromide complex is suggested to exist as a polymer [{Pd(2)Br(4)(mu(4)-1)}(n)] with the ligands 1 in mu(4)-kappa(4)-P(4) binding mode. The methylplatinum(II) complexes [Pt(2)Me(4)(mu-1)] and [Pt(2)Me(2)(mu-1)](O(2)CCF(3))(2) contain the ligand in mu-kappa(4)-P(4) and mu-kappa(6)-P(4)N(2) bonding modes, while the silver(I) complex [Ag(2)(O(2)CCF(3))(2) (mu-1)] contains the ligand 1 in an intermediate bonding mode in which the nitrogen donors are very weakly coordinated. The complexes [Pd(2)(OTf)(2)(mu-1)](OTf)(2) and [Ag(2)(O(2)CCF(3))(2)(mu-1)] react with 4,4'-bipyridine to give polymers [Pd(2)(micro-bipy)(mu-1)](OTf)(4) and [Ag(2)(mu-bipy)(mu-1)](O(2)CCF(3))(2).  相似文献   

3.
张炜  牟宗宏  杨立  刘中立 《有机化学》2001,21(2):155-159
三种带有不同取代基的重氮萘酮(la~1c)在THF和二氧六环中加热分解给出不同的产物。1-重氮-4-萘酮(1a)的热解产物主要是重氮萘酮热解后产生的烯酮卡宾(2a)与环醚开环后形成的聚合物;3-甲基-1-重氮-4-萘酮(1b)的热解产物比较复杂,除冠醚类产物之外,还有烯酮卡宾对四氢呋喃和二氧六环的C-H键的插入反应产物、螺环化合物、2-甲基萘酚以及难以分离的聚合物;3-硝基-1-重氮-4-萘酮(1c)的热解产物主要是聚合物,此外还有少量C-H键的插入反应产物和2-硝基萘酚。对重氮萘酮热解反应的机理作了讨论。  相似文献   

4.
The coordination chemistry of 6-methylpyridine-2-methanol (1) and enantiopure (R)-1-(6-methylpyridin-2-yl)ethanol (2) with a range of divalent first-row transition metal salts has been investigated in an effort to determine whether hydrogen-bonded helicates will form, as observed for cobalt(II) salts. Hydrogen-bonded helicates, [Cu2(1)2(1-H)2X2] (X = Cl, Br), were only observed upon combining 1 with CuCl2 and CuBr2 in MeOH solution. Other metal salts led to alternative products, viz. Cu(ClO4)2 in the presence of base gives [Cu2(1)2(1-H)2](ClO4)2, ZnCl2 and ZnBr2 give the 1-D helical coordination polymers [Zn(1-H)Cl]infinity and [Zn(1-H)Br]infinity, a mixture of NiCl2 and Ni(OAc)2 produces the [Ni4(1-H)4Cl2(OAc)2(MeOH)2] cubane, NiCl2 leads to the [Ni4(1-H)4Cl4(MeOH)4] cubane, while MnCl2 gives the known cubane [Mn4(1-H)6Cl4]. The reaction of 2 with CuCl2 produces the mononuclear complex Lambda-[Cu(2)2Cl]Cl, while reaction with CuBr2 leads to a dimer, Lambda,Lambda-[Cu2(2)3(2-H)Br2]Br, which is held together by a single hydrogen bond between the monomeric subunits. The solid-state CD spectra of these latter complexes were recorded and found to be very similar. The temperature-dependent magnetic behavior of [Cu2(1)2(1-H)2X2] (X = Cl, Br), [Cu2(1)2(1-H)2](ClO4)2, [Cu2(2)3(2-H)Br2]Br, and [Ni4(1-H)4Cl2(OAc)2(MeOH)2] was investigated. Weak antiferromagnetic coupling between the copper(II) centers is mediated by the hydrogen bonds in the [Cu2(1)2(1-H)2X2] (X = Cl, Br) complexes.  相似文献   

5.
1,2,4-triazole was alkylated (alkyl = methyl, butyl, heptyl, decyl) at N-1 in >90% isolated yields. The resulting 1-alkyl triazoles were quaternized at N-4 in >98% isolated yields using fluorinated alkyl halides with >98% isolated yields, under neat reaction conditions at 100-120 degrees C to form N1-CH(3)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-triazolium (Taz) iodide (m = 1, 6), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz iodide (m = 1, 4, 6), N1-C(7)H(15)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz iodide (m = 1, 4, 6), N1-C(10)H(21)-N4-(CH(2))(2)C(m)F(2)(m)(+1)-Taz iodide (m = 1, 4), and N1-C(n)H(2)(n )(+ 1)-N4-(CH(2))(2)F-Taz bromide (n = 4, 7, 10). Single-crystal X-ray analyses confirmed the structure of [1-CH(3)-4-CH(2)CH(2)CF(3)-Taz](+)I(-). It crystallized in the orthorhombic space group Pccn, and the unit cell dimensions were a = 13.8289(9) A, b = 17.3603(11) A, c = 9.0587(6) A (alpha = beta = gamma = 90 degrees ). Metathesis of these polyfluoroalkyl-substituted triazolium halides with other salts led to the formation of quaternary compounds, some of which comprise ionic liquids, namely, [R(R(f))-Taz](+)Y(-) (Y = NTf(2), BF(4), PF(6), and OTf), in good isolated yields without the need for further purification: N1-CH(3)-N4-(CH(2))(2)C(m)F(2)(m)( +) (1)-Taz Y (m = 1, 6; Y = NTf(2)), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz Y (m = 1, 4, 6; Y = NTf(2)), N1- C(7)H(15)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz Y (m = 1, 4, 6; Y = NTf(2)), N1-C(10)H(21)-N4-(CH(2))(2)C(m)F(2)(m)(+1)-Taz Y (n = 1, 4; Y = NTf(2)), N1-C(n)H(2)(n )(+ 1)-N4-(CH(2))(2)F-Taz Y (n = 7, 10; Y = NTf(2)), N1-C(10)H(21)-N4-(CH(2))(2)F-TazY (Y = OTf), N1-C(7)H(15)-N4-(CH(2))(2)F-TazY (Y = BF(4)), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m) (+ 1)-Taz Y (m = 4, 6; Y = PF(6)), N1-C(7)H(15)-N4-(CH(2))(2)C(4)F(9)-Taz Y (Y = PF(6)), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz Y (m = 4, 6; Y = OTf). All new compounds were characterized by (1)H, (19)F, and (13)C NMR and MS spectra and elemental analyses. T(g)s and T(m)s of ionic liquids were determined by DSC.  相似文献   

6.
[Rh(Cp)Cl(mu-Cl)](2) (Cp = pentamethylcyclopentadienyl) reacts (i) with [Au(NH=CMe(2))(PPh(3))]ClO(4) (1:2) to give [Rh(Cp)(mu-Cl)(NH=CMe(2))](2)(ClO(4))(2) (1), which in turn reacts with PPh(3) (1:2) to give [Rh(Cp)Cl(NH=CMe(2))(PPh(3))]ClO(4) (2), and (ii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:2 or 1:4) to give [Rh(Cp)Cl(NH=CMe(2))(2)]ClO(4) (3) or [Rh(Cp)(NH=CMe(2))(3)](ClO(4))(2).H(2)O (4.H(2)O), respectively. Complex 3 reacts (i) with XyNC (1:1, Xy = 2,6-dimethylphenyl) to give [Rh(Cp)Cl(NH=CMe(2))(CNXy)]ClO(4) (5), (ii) with Tl(acac) (1:1, acacH = acetylacetone) or with [Au(acac)(PPh(3))] (1:1) to give [Rh(Cp)(acac)(NH=CMe(2))]ClO(4) (6), (iii) with [Ag(NH=CMe(2))(2)]ClO(4) (1:1) to give 4, and (iv) with (PPN)Cl (1:1, PPN = Ph(3)P=N=PPh(3)) to give [Rh(Cp)Cl(imam)]Cl (7.Cl), which contains the imam ligand (N,N-NH=C(Me)CH(2)C(Me)(2)NH(2) = 4-imino-2-methylpentan-2-amino) that results from the intramolecular aldol-type condensation of the two acetimino ligands. The homologous perchlorate salt (7.ClO(4)) can be prepared from 7.Cl and AgClO(4) (1:1), by treating 3 with a catalytic amount of Ph(2)C=NH, in an atmosphere of CO, or by reacting 4with (PPN)Cl (1:1). The reactions of 7.ClO(4) with AgClO(4) and PTo(3) (1:1:1, To = C(6)H(4)Me-4) or XyNC (1:1:1) give [Rh(Cp)(imam)(PTo(3))](ClO(4))(2).H(2)O (8) or [Rh(Cp)(imam)(CNXy)](ClO(4))(2) (9), respectively. The crystal structures of 3 and 7.Cl have been determined.  相似文献   

7.
Raman spectroscopy has been used to study the molecular structure of a series of selected uranyl silicate minerals, including weeksite K2[(UO2)2(Si5O13)].H2O, soddyite [(UO2)2SiO4.2H2O] and haiweeite Ca[(UO2)2(Si5O12(OH)2](H2O)3 with UO2(2+)/SiO2 molar ratio 2:1 or 2:5. Raman spectra clearly show well resolved bands in the 750-800 cm-1 region and in the 950-1000 cm-1 region assigned to the nu1 modes of the (UO2)2+ units and to the (SiO4)4- tetrahedra. For example, soddyite is characterized by Raman bands at 828.0, 808.6 and 801.8 cm-1 (UO2)2+ (nu1), 909.6 and 898.0 cm-1 (UO2)2+ (nu3), 268.2, 257.8 and 246.9 cm-1 are assigned to the nu2 (delta) (UO2)2+. Coincidences of the nu1 (UO2)2+ and the nu1 (SiO4)4- is expected. Bands at 1082.2, 1071.2, 1036.3, 995.1 and 966.3 cm-1 are attributed to the nu3 (SiO4)4-. Sets of Raman bands in the 200-300 cm-1 region are assigned to nu2 (delta) (UO2)2+ and UO ligand vibrations. Multiple bands indicate the non-equivalence of the UO bonds and the lifting of the degeneracy of nu2 (delta) (UO2)2+ vibrations. The (SiO4)4- tetrahedral are characterized by bands in the 470-550 cm-1 and in the 390-420 cm-1 region. These bands are attributed to the nu4 and nu2 (SiO4)4- bending modes. The minerals show characteristic OH stretching bands in the 2900-3500 cm-1 and 3600-3700 cm-1.  相似文献   

8.
The ligand 1,2-bis(benzimidazol-2-yl)-1,2-ethanediol (H2bzimed, 1) and its N-methylated analogue (H2mbzimed, 2) form a variety of polynuclear complexes with copper(II), all of which contain a planar Cu2O2 lozenge as a central element and in which the bridging oxygen belongs to an alkoxo group of the ligand. Syntheses are reported for dinuclear [Cu2(Hmbzimed)2](ClO4)2 x 1.5H2O, Cu(2)2(2), and the tetranuclear species [Cu4(Hbzimed)4(ClO4)2](NO3)2 x 4H2O, Cu(4)1(4), [Cu4(Hmbzimed)2(mbzimed)Cl2](ClO4)2 x 2H2O x C2H5OH, Cu(4)2(3), and rac-[Cu4(H2bzimed)4(bzimed)(ClO4)2](ClO4)4 x 1.5H2O x 3.5C2H5OH, Cu(4)1(5). Crystal structures are reported for the tetranuclear species. Cu(4)1(4) shows a cubane structure, Cu(4)2(3) a stepped cubane structure, and rac-Cu(4)1(5) a novel structure in which one doubly deprotonated ligand lies between the two Cu2O2 units. Magnetic susceptibility measurements indicate that all complexes show antiferromagnetic coupling in the solid state. Studies in solution (ESI-MS, CD, NMR) show that Cu(2)2(2) and Cu(4)2(3) persist in solution but that Cu(4)1(4) dissociates partially and rac-Cu(4)1(5) completely. The six coordination modes of the ligands are discussed together with the effect of the N-methylation on the ligand conformation.  相似文献   

9.
Ou GC  Jiang L  Feng XL  Lu TB 《Inorganic chemistry》2008,47(7):2710-2718
The reactions of a racemic four-coordinated nickel(II) complex [Ni(alpha-rac-L)](ClO4)2 (containing equal amount of SS and RR enantiomers) with l- and d-phenylalanine in acetonitrile/water gave two less-soluble six-coordinated enantiomers of {[Ni( f-SS-L)(l-Phe)](ClO4)}n (Delta-1) and {[Ni(f- RR-L)(d-Phe)](ClO4)}n (Lambda-1), respectively. Evaporation the remaining solutions gave two six-coordinated diastereomers of {[Ni 3(f- RR-L)3(l-Phe)2(H 2O)](ClO4)4}n (a-2) and {[Ni3(f- SS-L)3(d-Phe)2(H2O)](ClO4)4}n (b-2), respectively (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, Phe(-) = phenylalanine anion). The reaction of [Ni(alpha-rac-L)](ClO4)2 with dl-Phe(-) gave a conglomerate of c-1; in which, the SS and RR enantiomers preferentially coordinate to l- and d-Phe(-) respectively to give a racemic mixture of Delta-1 and Lambda-1, and the spontaneous resolution occurs during the reaction, in which each crystal crystallizes to become enantiopure. Removing Phe(-) from Delta-1 and Lambda-1 using perchloric acid gave two enantiomers of [Ni(alpha-SS-L)](ClO4)2 (S-3) and [Ni(alpha-RR-L)](ClO4)2 (R-3). Dissolving S-3 and R-3 in acetonitrile gave two six-coordinated enantiomers of [Ni( f-SS-L)(CH3CN)2](ClO4)2 (S-4) and [Ni( f- RR-L)(CH3CN)2](ClO4)2 (R-4), while dissolving [Ni(alpha-rac-L)](ClO4)2 in acetonitrile gave a racemic twining complex [Ni(f-rac-L)(CH3CN)2](ClO4)2 (rac-4). Delta-1 and Lambda-1 belong to supramolecular stereoisomers, which are constructed via hydrogen bond linking of [Ni( f-SS-L)(l-Phe)](+) and [Ni(f-RR-L)(d-Phe)](+) monomers to form 1D homochiral right-handed and left-handed helical chains, respectively. The reaction of S-3 with d-Phe(-) gave {[Ni(f-SS-L)(d-Phe)](ClO4)}n (5), which shows a motif of a 1D hydrogen bonded zigzag chain instead of a 1D helical chain. Compound a-2/ b-2 contains dimers of [{Ni(f-RR-L)}2(l-Phe)(H2O)](3+)/[{Ni( f- SS-L)}2(d-Phe)(H2O)](3+) and 1D zigzag chains of {[Ni(f-RR-L)(l-Phe)](+)}n /{[Ni(f-SS-L)(d-Phe)](+) n . The homochiral nature of Delta-1/Lambda-1, a-2/b-2, S-3/R-3, and S-4/R-4 are confirmed by the results of circular dichroism (CD) spectra measurements.  相似文献   

10.
Hydroxo- and methoxo-bridged tetranuclear copper(II) complexes of the tetramacrocyclic ligand 1,2,4,5-tetrakis(1,4,7-triazacyclonon-1-ylmethyl)benzene (Ldur), have been prepared from [Cu4Ldur(H2O)8](ClO4)8.9H2O (1). Addition of base to an aqueous solution of 1 gave [Cu4Ldur(mu2-OH)4](ClO4)4 (2). Diffusion of MeOH into a DMF solution of 2 produces [Cu4Ldur(mu2-OMe)4](ClO4)4.HClO4.2/3MeOH (3), a complex which hydrolyzes on exposure to moisture regenerating 2. The structurally related azido-bridged complex, [Cu4Ldur(mu2-N3)4](PF6)4.4H2O.6CH3CN (4), was produced by reaction of Ldur with 4 molar equiv of Cu(OAc)2.H2O and NaN3 in the presence of excess KPF6. Compounds 2-4 crystallize in the triclinic space group P1 (No. 2) with a = 10.248(1) A, b = 12.130(2) A, c = 14.353(2) A, alpha = 82.23(1) degrees, beta = 80.79(1) degrees, gamma = 65.71(1) degrees, and Z = 1 for 2, a = 10.2985(4) A, b = 12.1182(4) A, c = 13.9705(3) A, alpha = 89.978(2) degrees, beta = 82.038(2) degrees, gamma = 65.095(2) degrees, and Z = 1 for 3, and a = 12.059(2) A, b = 12.554(2) A, c = 14.051(2) A, alpha = 91.85(1) degrees, beta = 98.22(1) degrees, gamma = 105.62(1) degrees, and Z = 1 for 4. The complexes feature pairs of isolated dibridged copper(II) dimers with "roof-shaped" Cu2(mu2-X)2 cores (X = OH-, OMe-, N3-), as indicated by the dihedral angle between the two CuX2 planes (159 degrees for 2, 161 degrees for 3, and 153 degrees for 4). This leads to Cu.Cu distances of 2.940(4) A for 2, 2.962(1) A for 3, and 3.006(5) A for 4. Variable-temperature magnetic susceptibility measurements indicate weak antiferromagnetic coupling (J = -27 cm(-1)) for the hydroxo-bridged copper(II) centers in 2 and very strong antiferromagnetic coupling (J = -269 cm(-1)) for the methoxo-bridged copper(II) centers in 3. Pairs of copper(II) centers in 4 display the strongest ferromagnetic interaction (J = 94 cm(-1)) reported thus far for bis(mu2-1,1-azido)-bridged dicopper units. Spectral measurements on a neat powdered sample of 4 at 33.9 GHz or 90 Ghz confirm the spin-triplet ground state for the azido-bridged copper(II) pairs.  相似文献   

11.
中心为氨基、末端为硝基的苯乙炔树枝状分子的合成   总被引:1,自引:0,他引:1  
将固定相合成与“收敛/发散”方法相结合,合成了第一、二代苯乙炔树枝状分子.通过Heck-Cassar-Sonogashira-Hagihara偶联反应,将其中心和末端分别修饰上供电子的氨基和拉电子的硝基,得到第一、二代中心为氨基、末端为硝基的苯乙炔树枝状分子NH2-G1-(NO2)2和NH2-G2-(NO2)4.用傅里叶变换红外光谱跟踪了整个固定相合成过程.苯乙炔树枝状分子的紫外-可见吸收光谱呈现出规律性变化.  相似文献   

12.
The reactions of AlCl 3.6H 2O and GaCl 3 with 2-pyridylphosphonic acid (2PypoH 2) and 4-pyridylphosphonic acid (4PypoH 2) afford cyclic aluminum and gallium phosphonate structures of [(2PypoH) 4Al 4(OH 2) 12]Cl 8.6H 2O ( 1), [(4PypoH) 4Al 4(OH 2) 12]Cl 8.11H 2O ( 2), [(2PypoH) 4Al 4(OH 2) 12](NO 3) 8.7H 2O ( 3), [(2PypoH) 2(2Pypo) 4Ga 8Cl 12(OH 2) 4(thf) 2](GaCl 4) 2..8thf ( 4), and [(2PypoH) 2(2Pypo) 4Ga 8Cl 12(OH 2) 4(thf) 2](NO 3) 2.9thf ( 5). Structures 1- 3 feature four aluminum atoms bridged by oxygen atoms from the phosphonate moiety and show structural resemblance to the secondary building units found in zeolites and aluminum phosphates. The gallium complexes, 4 and 5, have eight gallium atoms bridged by phosphonate moieties with two GaCl 4 (-) counterions present in 4 and nitrate ions in 5. The cage structures 1- 3 are interlinked by strong hydrogen bonds, forming polymeric chains that, for aluminum, are thermally robust. Exchange of the phosphonic acid for the more flexible 4PyCH 2PO 3H 2 afforded a coordination polymer with a 1:1 Ga:P ratio, {[(4PyCH 2PO 3H)Ga(OH 2) 3](NO 3) 2.0.5H 2O} x ( 6). Complexes 1- 6 were characterized by single-crystal X-ray diffraction, NMR, and mass spectrometry and studied by TGA.  相似文献   

13.
Wu JY  Lin YF  Chuang CH  Tseng TW  Wen YS  Lu KL 《Inorganic chemistry》2008,47(22):10349-10356
Self-assembly of AgNO 3 with the semirigid tetratopic ligands 1,2,4,5-tetrakis(benzoimidazol-1-ylmethyl)benzene (TBim) and 1,2,4,5-tetrakis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene (TDMBim) afforded compounds [Ag 4(mu 4-TBim) 2(mu 2-eta (2)-NO 3) 2](NO 3) 2. (1)/ 2CH 2Cl 2.2CH 3OH ( 1mu (1)/ 2CH 2Cl 2.2CH 3OH) and [(NO 3 (-)) subset{Ag 4(mu 4-TDMBim) 2}][Ag(NO 3) 2](NO 3) 2.CH 2Cl 2.CH 3OH.4H 2O ( 2.CH 2Cl 2.CH 3OH.4H 2O), respectively. The structures of 1 and 2 were characterized by single-crystal X-ray diffraction analysis. Both compounds adopt a M 4L 2-type tetragonal metalloprismatic cage structure, [Ag 4(mu 4-L) 2] (4+), with strong intramolecular silver-silver contacts. Compound 1 is a discrete species, while compound 2 is a novel infinite chainlike supramolecular array involving silver metal strings assembled from a [Ag 4(mu 4-L) 2] (4+) nanocage and silver linkages. Thermogravimetric analyses of 1. (1)/ 2CH 2Cl 2.2CH 3OH and 2.CH 3OH.4H 2O indicate that the Ag 4L 2-cage structures of 1 and 2 both are thermally stable up to 330 degrees C. Results from an in situ (1)H NMR study of AgNO 3 and TDMBim in different molar ratios unambiguously revealed the successive self-organization process, in which self-organization of the molecular cage takes place initially followed by crystallization of the corresponding supramolecular arrays with silver metal strings.  相似文献   

14.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

15.
MeNH(2) reacts with silver salts AgX (2:1) to give [Ag(NH(2)Me)(2)]X [X = TfO = CF(3)SO(3) (1.TfO) and ClO(4) (1.ClO(4))]. Neutral mono(amino) Rh(III) complexes [Rh(Cp*)Cl(2)(NH(2)R)] [R = Me (2a), To = C(6)H(4)Me-4 (2b)] have been prepared by reacting [Rh(Cp*)Cl(mu-Cl)](2) with RNH(2) (1:2). The following cationic methyl amino complexes have also been prepared: [Rh(Cp*)Cl(NH(2)Me)(PPh(3))]TfO (3.TfO), from [Rh(Cp*)Cl(2)(PPh(3))] and 1.TfO (1:1); [Rh(Cp*)Cl(NH(2)R)2]X, where R = Me, X = Cl, (4a.Cl), from [Rh(Cp*)Cl(mu-Cl)]2 and MeNH2 (1:4), or R = Me, X = ClO4 (4a.ClO4), from 4a.Cl and NaClO4 (1:4.8), or R = To, X = TfO (4b.TfO), from [Rh(Cp*)Cl(mu-Cl)](2), ToNH(2) and TlTfO (1:4:2); [Rh(Cp*)(NH(2)Me)(tBubpy)](TfO)(2) (tBubpy = 4,4'-di-tert-butyl-2,2'-bipyridine, 5.TfO), from 2a, TlTfO and tBubpy (1:2:1); [Rh(Cp*)(NH(2)Me)(3)](TfO)2 (6.TfO) from [Rh(Cp*)Cl(mu-Cl)](2) and 1.TfO (1:4). 2-6 constitute the first family of methyl amino complexes of rhodium. 1 and 4a.ClO(4) react with acetone to give, respectively, the methyl imino complexes [Ag{N(Me)=CMe(2)}()]X [X = TfO (7.TfO), ClO(4) (7.ClO(4))], and [Rh(Cp*)Cl(Me-imam)]ClO(4) [8.ClO(4), Me-imam = N,N'-N(Me)=C(Me)CH(2)C(Me)(2)NHMe]. 7.X (X = TfO, ClO(4)) are new members of the small family of methyl acetimino complexes of any metal whereas 8.ClO4 results after a double acetone condensation to give the corresponding bis(methyl acetimino) complex and an aldol-like condensation of the two imino ligands. The acetimino complex [Ag(NH=CMe(2))(2)]ClO(4) reacts with [Rh(Cp*)Cl(imam)]ClO(4) [1:1, imam = N,N'-NH=C(Me)CH(2)C(Me)(2)NH(2)] to give [Rh(Cp*)(imam)(NH=CMe(2))](ClO(4))(2) (9a.ClO(4)). 8.ClO(4) reacts with AgClO(4) (1:1) in MeCN to give [Rh(Cp*)(Me-imam)(NCMe)](ClO(4))2 (9b.ClO(4)), which in turn reacts with XyNC (Xy = C(6)H(3)Me(2)-2,6) or with MeNH(2) (1:1) to give [Rh(Cp*)(Me-imam)L](ClO(4))(2) [L = XyNC (9c.ClO(4)), MeNH(2) (9d.ClO(4))]. 6.TfO reacts with acetophenone to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=N(Me)-2}(NH(2)Me)]TfO (10a.TfO), the first complex resulting from such a condensation and cyclometalation reaction. In turn, 10a.TfO reacts with isocyanides RNC (1:1) at room temperature to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=NMe-2}(CNR)]TfO [R = tBu (10b.TfO), Xy (10c.TfO)], or 1:12 at 60 degrees C to give [Rh(Cp*){C,N-C(=NXy)C(6)H(4)C(Me)=N(Me)-2}(CNXy)]TfO (11.TfO). The crystal structures of 9a.ClO(4).acetone-d6, 9c.ClO(4), and 10a.TfO have been determined.  相似文献   

16.
Reduction of bis     
The reduction of symmetric, fully-substituted titanocene dichlorides bearing two pendant omega-alkenyl groups, [TiCl2(eta5-C5Me4R)2], R = CH(Me)CH= CH2 (1a). (CH2)2CH=CH2 (1b) and (CH2)3CH=CH2 (1c), by magnesium in tetrahydrofuran affords bis(cyclopentadienyl)titanacyclopentanes [Ti(IV)[eta1:eta1: eta5:eta5-C5Me4CH(Me)CH(Ti)CH2CH(CH2(Ti))CH(Me)C5Me4]] (2a), [Ti(IV)[eta1:eta1:eta5: eta5-C5Me4(CH2)2CH(Ti)(CH2)2CH(Ti)(CH2)2C5Me4]] (2b) and [Ti(IV)[eta1:eta1:eta5:eta5-C5Me4(CH2)2CH(Ti)CH(Me)CH(Me)CH(Ti)(CH2)2C5Me4]](2c), respectively, as the products of oxidative coupling of the double bonds across a titanocene intermediate. For the case of complex 1c, a product of a double bond isomerisation is obtained owing to a preferred formation of five-membered titanacycles. The reaction of the titanacyclopentanes with PbCl2 recovers starting materials 1a from 2a and 1b from 2b, but complex 2c affords, under the same conditions, an isomer of 1c with a shifted carbon - carbon double bond, [TiCl[eta5-C5Me4(CH2CH2CH=CHMe)]2] (1c'). The titanacycles 2a-c can be opened by HCl to give ansa-titanocene dichlorides ansa-[[eta5:eta5-C5Me4CH(Me)CH2CH2CH(Me)CH(Me)C5Me4]TiCl2] (3a), ansa-[[eta5:eta5-C5Me4(CH2)8C5Me4]TiCl2] (3b), along with a minor product ansa-[[eta5:eta5-C5Me4CH2CH=CH(CH2)5C5Me4]TiCl2] (3b'), and ansa-[[eta5:eta5-CsMe4(CH2)3CH(Me)CH(Me)CH=CHCH2C5Me4]TiCl2] (3c), respectively, with the bridging aliphatic chain consisting of five (3a) and eight (3b, 3b' and 3c) carbon atoms. The course of the acidolysis changes with the nature of the pendant group; while the cyclopentadienyl ring-linking carbon chains in 3a and 3b are fully saturated, compounds 3c and 3b' contain one asymetrically placed carbon-carbon double bond, which evidently arises from the beta-hydrogen elimination that follows the HCl addition.  相似文献   

17.
The reactions of [Ag(NH=CMe2)2]ClO4 with cis-[PtCl2L2] in a 1:1 molar ratio give cis-[PtCl(NH=CMe2)(PPh3)2]ClO4 (1cis) or cis-[PtCl(NH=CMe2)2(dmso)]ClO4 (2), and in 2:1 molar ratio, they produce [Pt(NH=CMe2)2L2](ClO4)2 [L = PPh3 (3), L2= tbbpy = 4,4'-di-tert-butyl-2,2'-dipyridyl (4)]. Complex 2 reacts with PPh3 (1:2) to give trans-[PtCl(NH=CMe2)(PPh3)2]ClO(4) (1trans). The two-step reaction of cis-[PtCl2(dmso)2], [Au(NH=CMe2)(PPh3)]ClO4, and PPh3 (1:1:1) gives [SP-4-3]-[PtCl(NH=CMe2)(dmso)(PPh3)]ClO4 (5). The reactions of complexes 2 and 4 with PhICl2 give the Pt(IV) derivatives [OC-6-13]-[PtCl3(NH=CMe2)(2)(dmso)]ClO4 (6) and [OC-6-13]-[PtCl2(NH=CMe2)2(dtbbpy)](ClO4)2 (7), respectively. Complexes 1cis and 1trans react with NaH and [AuCl(PPh3)] (1:10:1.2) to give cis- and trans-[PtCl{mu-N(AuPPh3)=CMe2}(PPh3)2]ClO4 (8cis and 8trans), respectively. The crystal structures of 4.0.5Et2O.0.5Me2CO and 6 have been determined; both exhibit pseudosymmetry.  相似文献   

18.
合成双酚AF的新方法   总被引:5,自引:1,他引:4  
戴燕  吕春绪  李斌栋  李晶晶 《应用化学》2009,26(11):1292-1296
由六氟丙酮三水合物和苯胺,经缩合、重氮化、水解、Friedel-Crafts烷基化等4步反应在常压下合成了双酚 AF。首先,以五氧化二铌为催化剂,在 n (HFA•3H2O) : n (aniline) : n (Nb2O5) = 2 : 1 : 0.1,回流 6 h 条件下,合成出中间体(Ⅰ),收率高达96.3%。然后在重氮化温度为 ﹣2 ~ 2 ℃,硫酸质量分数为 14.7%,n (Ⅰ) : n (H2SO4) : n (NaNO2) = 1 : 4.1 : 1.1,及水解时硫酸质量分数为 50%,n (H2SO4) : n (Ⅰ) = 11.0 : 1、108~112 ℃反应 1.5 ~ 2 h 的优化条件下,化合物Ⅰ经重氮化、水解后以 92.7%的高收率得到中间体 2-(4-羟基苯)六氟异丙醇(Ⅱ);再在甲磺酸存在下,化合物Ⅱ与苯酚经Friedel-Crafts烷基化反应以 72.4% 的收率合成了目标产物双酚 AF(Ⅲ),总收率为 64.6%(以苯胺为基准计算)。  相似文献   

19.
The quasi-Werner-type copper(II) complex, [Cu(PF(6))(2)(4-mepy)(4)] (1), in which 4-mepy is the 4-methylpyridine ligand, has flexible and polar axial bonds of Cu-PF(6). Flexibility of the Cu-PF(6) bonds induces diverse and unprecedented guest-inclusion structures, such as {[Cu(PF(6))(2)(4-mepy)(4)][Cu(PF(6))(4-mepy)(4)(acetone)]·PF(6)·4acetone} (γ-1?2.5acetone), {[Cu(PF(6))(2)(4-mepy)(4)][Cu(PF(6))(4-mepy)(4)(2-butanone)]·PF(6)·3.5(2-butanone)} (γ-1?2.25(2-butanone)), {[Cu(PF(6))(2)(4-mepy)(4)][Cu(PF(6))(4-mepy)(4)(H(2)O)]·PF(6)·4benzene} (γ-1?0.5H(2)O·2benzene), and {[Cu(PF(6))(2)(4-mepy)(4)]·2benzene} (γ-1?2benzene). Exposure of the dense form, α-1, to benzene vapor affords the benzene-inclusion complex {[Cu(PF(6))(2)(4-mepy)(4)]·2benzene} (γ-1?2benzene), all benzene guests of which are easily removed by vacuum drying, reforming guest-free, dense α-1' with smaller sized crystals than α-1. In contrast to α-1, which shows almost no CO(2) adsorption, α-1' adsorbs CO(2) gas with structural transformations, this being the first example that exhibits adsorption of gas in a dense Werner-type complex and a drastic change in adsorption properties depending on the size of the crystals.  相似文献   

20.
Air-oxidation of Cp'(4)Fe(4)(HCCH)(2) (Cp' = Cp (1a), C(5)H(4)Me (1b)) in an NH(4)PF(6)/CH(3)CN solution afforded the one-electron oxidized clusters [Cp'(4)Fe(4)(HCCH)(2)](PF(6)). Oxidation of 1a with excess AgBF(4) in THF afforded [1a](BF(4)), while that of 1b with excess AgBF(4) gave [1b](BF(4))(2). The X-ray crystal structure analysis of [1a](BF(4)) revealed that the monocationic cluster retains the butterfly-type Fe(4)(mu4-eta(2):eta(2):eta(1):eta(1)-HCCH)(2) framework similar to that of the neutral cluster. The average Fe-Fe bond length is shorter by 0.029 A than that in the neutral cluster. Electrochemical oxidation of 1a and 1b in 0.1 M NH(4)PF(6)/CH(3)CN solution at +0.30 and +0.25 V versus Ag/10 mM AgNO(3), respectively, afforded the two-electron oxidized clusters [1a](PF(6))(2) and [1b](PF(6))(2). The X-ray crystal structure analysis for [1b](BF(4))(2) shows that the butterfly-type cluster core is retained but shrinks more of those of neutral and monocationic clusters. The four Fe-Fe bonds in [1b](BF(4))(2) are unequivalent: one Fe-Fe bond (2.397(1) A) is apparently shorter than the others (2.439(2)-2.461(2) A).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号