首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel strategy for the fabrication of microcapsules is elaborated by employing biomacromolecules and a dissolvable template. Calcium carbonate (CaCO(3)) microparticles were used as sacrificial templates for the two-step deposition of polyelectrolyte coatings by surface controlled precipitation (SCP) followed by the layer-by-layer (LbL) adsorption technique to form capsule shells. When sodium alginate was used for inner shell assembly, template decomposition with an acid resulted in simultaneous formation of microgel-like structures due to calcium ion-induced gelation. An extraction of the calcium after further LbL treatment resulted in microcapsules filled with the biopolymer. The hollow as well as the polymer-filled polyelectrolyte capsules were characterized using confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and scanning force microscopy (SFM). The results demonstrated multiple functionalities of the CaCO(3) core - as supporting template, porous core for increased polymer accommodation/immobilization, and as a source of shell-hardening material. The LbL treatment of the core-inner shell assembly resulted in further surface stabilization of the capsule wall and supplementation of a nanostructured diffusion barrier for encapsulated material. The polymer forming the inner shell governs the chemistry of the capsule interior and could be engineered to obtain a matrix for protein/drug encapsulation or immobilization. The outer shell could be used to precisely tune the properties of the capsule wall and exterior. [Diagram: see text] Confocal laser scanning microscopy (CLSM) image of microcapsules (insert is after treating with rhodamine 6G to stain the capsule wall).  相似文献   

2.
Novel hollow microcapsules based on iron-heparin complex multilayers   总被引:2,自引:0,他引:2  
Iron-polysaccharide complex have been extensively utilized in the treatment of iron deficiency anemia for parenteral administration. Herein, a novel iron-heparin complexed hollow capsules with nanoscaled wall thickness have been fabricated by means of alternating deposition of ferric ions (III) (Fe+) and heparin (Hep) onto the surface of submicroscaled (488 nm) and microscaled (10.55 microm) polystyrene latex particles via both electrostatic interaction and chemical complexation processes, followed by dissolution of the cores using tetrahydrofuran. Confocal micrographs and atomic force microscopy (AFM) images prove that iron-heparin complexed submicroscaled hollow capsules keep spherical shapes in solution and even after drying. The activated partial thromboplastin time (APTT) assay shows that complexing with ferric ions do not compromise the catalytic capacity of heparin to promote antithrombin III-mediated thrombin inactivation. The anticoagulant activity value of (Fe3+/Hep)8 capsules is evaluated to be about 95.7 U/mg, indicating that approximately 0.55 mg heparin was in 1 mg powder of submicroscaled (Fe3+/Hep)8 hollow capsules. Compared with the same dosage of heparin, iron-heparin complexed hollow capsules display a more prolonged anticoagulant duration than heparin. All these results reveal that such submicroscaled iron-heparin complexed hollow capsules have application potential as an injectable anticoagulant vehicle.  相似文献   

3.
Stable hollow polyelectrolyte capsules were produced by the layer‐by‐layer assembling of non‐biodegradable polyelectrolytes – poly(allylamine) and poly(styrenesulfonate) on melamine formaldehyde microcores followed by the core decomposition at low pH. A proteolytic enzyme, α‐chymotrypsin, was encapsulated into these microcapsules with high yields of up to 100%. The encapsulation procedure was based on the protein adsorption onto the capsule shells and on the pH‐dependent opening and closing of capsule wall pores. The protein in the capsules retained a high activity, and thermo‐ and storage stability. The nanostructured polyelectrolyte shell protected the proteinase from a high molecular weight inhibitor. Such enzyme‐loaded capsules can be used as microreactors for biocatalysis.  相似文献   

4.
Poly(ethyleneimine) (PEI) microcapsules were prepared via the method of glutaraldehyde (GA)‐mediated covalent layer‐by‐layer (LbL) assembly, which utilized GA to cross‐link the adsorbed PEI layer and to introduce free aldehyde group on the surface for the next PEI adsorption on MnCO3 microparticles, followed by core removal. Evidenced by ellipsometry, the PEI multilayers grew nearly linearly along with the layer number and their thickness was controlled at the nanometer scale. The hollow structure, morphology, and wall thickness were characterized by scanning electron microscopy (SEM), scanning force microscopy (SFM), and confocal laser scanning microscopy (CLSM), revealing that the capsule structure as well as the cut‐off molecular weight of the capsule wall could be tuned by the molecular weight of PEI. This offers a general and novel pathway to fabricate single component capsules with pre‐designed structure (size, shape, and wall thickness) and properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The distribution and exchange dynamics of phenol molecules in colloidal dispersions of submicron hollow polymeric capsules is investigated by pulsed field gradient NMR (PFG-NMR). The capsules are prepared by layer-by-layer assembly of polyelectrolyte multilayers on silica particles, followed by dissolution of the silica core. In capsule dispersion, (1)H PFG echo decays of phenol are single exponentials, implying fast exchange of phenol between a free site and a capsule-bound site. However, apparent diffusion coefficients extracted from the echo decays depend on the diffusion time, which is typically not the case for the fast exchange limit. We attribute this to a particular regime, where apparent diffusion coefficients are observed, which arise from the signal of free phenol only but are influenced by exchange with molecules bound to the capsule, which exhibit a very fast spin relaxation. Indeed, relaxation rates of phenol are strongly enhanced in the presence of capsules, indicating binding to the capsule wall rather than encapsulation in the interior. We present a quantitative analysis in terms of a combined diffusion-relaxation model, where exchange times can be determined from diffusion and spin relaxation experiments even in this particular regime, where the bound site acts as a relaxation sink. The result of the analysis yields exchange times between free phenol and phenol bound to the capsule wall, which are on the order of 30 ms and thus slower than the diffusion controlled limit. From bound and free fractions an adsorption isotherm of phenol to the capsule wall is extracted. The binding mechanism and the exchange mechanism are discussed. The introduction of the global analysis of diffusion as well as relaxation echo decays presented here is of large relevance for adsorption dynamics in colloidal systems or other systems, where the standard diffusion echo decay analysis is complicated by rapidly relaxing boundary conditions.  相似文献   

6.
A novel capsule composed of an azo dye, Congo red (CR), and different polymers, including poly(styrenesulfonate, sodium salt) (PSS), poly(allylamine hydrochloride) (PAH), and poly(diallyldimethylammonium chloride) (PDDA), have been successfully fabricated by the layer-by-layer self-assembly technique. The stepwise linear deposition process was monitored by means of UV-visible absorption measurements. The formation of hollow capsules was verified by confocal laser scanning microscopy (CLSM) and scanning force microscopy (SFM). The resulting hollow PSS/PAH/CR/PDDA capsules displayed a sensitive response to visible light. Optical changes of the hollow capsules prior to and after the photoreaction were investigated in detail by means of UV-visible spectroscopy, CLSM, and SFM. It was found that the photochemical reaction of the assembled hollow capsules depends strongly on the matrix. Qualitative results on the permeability of the hollow capsule walls with CR as one component indicate that the permeability of the walls can be easily photo-controlled at varying irradiation time intervals without addition of external chemicals.  相似文献   

7.
Poly(carboxylic acid) hydrogel films and hollow capsules undergo reversible size changes in response to variations in pH and/or ionic strength. The films and capsules were obtained from hydrogenbonded poly-N-vinylpyrrolidone/poly(carboxylic acid) layer-by-layer films by chemical crosslinking of the polyacid, followed by pH-induced removal of poly-N-vinylpyrrolidone. Surface-attached hydrogel films present attractive matrices for reversible pH-stimulated loading and/or controlled release of large amounts of synthetic or natural macromolecules including proteins. By varying acidity of poly(carboxylic acids), the hydrogel swelling and the corresponding values of pH for encapsulation/release of functional molecules could be tuned in a wide range from pH 5 to 10. In addition, the capsules are capable of entrapping macromolecules by “locking” the capsule wall with an electrostatically associating polycation, followed by the release of the encapsulated macromolecules at high salt concentrations. The text was submitted by the authors in English.  相似文献   

8.
Alternating adsorption of multivalent ions and oppositely charged polyelectrolytes on colloid particles has been investigated. Multilayer films composed of Tb3+/polysterene sulfonate (PSS) and 4-pyrene sulfate/polyallylamine (PAH) were successfully assembled on polysterene sulfonate (PS) and melamine formaldehyde (MF) latex particles. The amount of assembled material was estimated by fluorescence and the linear growth of the film versus the number of layers was demonstrated. These multilayers are not stable and can be decomposed by salt and temperature. Dissolution of MF particles leads to formation of hollow capsules consisting of multivalent ion/polyelectrolyte multilayers. Comparative analysis of the capsules was done by confocal and scanning force microscopy. Complex hollow spheres consisting of Tb3+/PSS or 4-PS/PAH as an inner shell and stable PSS/PAH as an outer shell were produced. Due to selective permeability of the outer shell after degradation of the inner shell the multivalent ions are released out of the capsule while the polyelectrolytes fill the capsule interior. This is indicative of swelling of the capsule by osmotic pressure. The filled capsules were studied by confocal and scanning electron microscopy. Possibilities of encapsulating macromolecules in defined amounts per capsule are discussed.  相似文献   

9.
In this work, growth of lightly crosslinked poly(2‐hydroxyethyl methacrylate) (PHEMA) brushes and subsequent capsule formation using Pickering emulsion interface‐initiated atom transfer radical polymerization (PEII‐ATRP) were investigated. Initiator‐immobilized silica nanoparticles (2.5 initiators/nm2) assembled at the interface of paraffin oil‐in‐water emulsions and ultimately stable Pickering emulsions were formed. PEII‐ATRP was conducted in the water phase of Pickering emulsions from the part of the surfaces of initiator‐immobilized silica nanoparticles exposed to water by using copper(I) chloride/bipyridine as catalyst at 35 °C. As PHEMA has a character of lightly crosslinking when the polymerization occurs in water, novel hybrid capsules (“colloidosomes”) can be obtained and were observed by confocal laser scanning microscope (CLSM) and optical microscopy (OM). The semipermeability of the resultant hollow capsules was demonstrated by the diffusion of 1‐phenylazo‐2‐naphthol. Meanwhile, the conformation of PHEMA chains can be varied in different solvents, which affects the semipermeability of these hybrid hollow capsules. We expect these hollow capsules can be further utilized to develop microdevices for drugs or cells delivery. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1354–1367, 2009  相似文献   

10.
A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 × 107 to 2.03 × 108 molecules per capsule with decrease in pH from 4.5 to 3. The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides.  相似文献   

11.
Swelling and shrinking of polyelectrolyte microcapsules consisting of poly(styrene sulfonate, sodium salt) (PSS) and poly(diallyldimethyl ammonium) chloride (PDADMAC) multilayers have been observed in response to temperature and electrolyte exposure, respectively. Heat-induced capsule swelling and capsule wall volume reduction were observed by confocal laser scanning microscopy (CLSM) and scanning force microscopy (SFM). On the other hand, pronounced shrinking in diameter induced by exposure to an electrolyte was observed in parallel to increases in the thickness of the capsule wall. The estimated wall volume was reduced to two thirds of the control for the salt-exposed capsules and one half for the salt-exposed and simultaneously annealed capsules. This reduction in volume was supposedly mainly caused by the compression of the capsule wall due to the ionic screening from the electrolyte. The highly porous microstructure of the multilayers and loosely bound PSS/PDADMAC complex are thought to be responsible for the structure of the PSS/PDADMAC capsules being easily modulated upon annealing and salt-exposure.  相似文献   

12.
Diffusion exchange of dextran with molecular weights 4.4 and 77 kDa through polyelectrolyte multilayer (PEM) hollow capsules consisting of four bilayers of polystyrene sulfonate/polydiallyldimethylammonium chloride has been investigated using two-dimensional nuclear-magnetic-resonance methods: diffusion-diffusion exchange spectroscopy (DEXSY) and diffusion-relaxation correlation spectroscopy (DRCOSY). Results obtained in DRCOSY experiments show that the diffusion process of dextran 77 kDa exhibits an observation time dependence suggesting a diffusion behavior restricted by confinement. We find evidence for both single capsule and capsule aggregate states, with a partitioning of the 77-kDa dextran between the free and capsule states much larger than that suggested by volume fraction alone. Results from DEXSY experiments show that dextran 77 kDa is in diffusive exchange through the capsules with an exchange time of around 1 s. In contrast, the capsules have no detectable influence on the diffusion process of the dextran 4.4 kDa. This quantitative information may be used in designing PEM capsules as drug carriers.  相似文献   

13.
Fe2O3 and Fe2O3/SiO2 hollow spheres with tailored dimensions and compositions were created by consecutively coating polystyrene (PS) latices either with Fe3+ alternately adsorbed with Nafion or combining a sol-gel process based on the hydrolysis of tetraethoxysilane (TEOS), and subsequently removing the cores upon pyrolysis.  相似文献   

14.
This paper presents a study of the permeation of poly(ethylene oxide) (PEO) chains through the nanoporous wall of hollow polymeric capsules prepared by self-assembly of polyelectrolytes. We employ the method of pulsed field gradient (PFG) NMR diffusion to distinguish chains in different sites, i.e., in the capsule interior and free chains in the dispersion, by their respective diffusion coefficient. From a variation of the observation time, the time scale of the molecular exchange between both sites and thus the permeation rate constant is extracted from a two-site exchange model. Permeation rate constants show two different regimes with a different dependence on chain length. This suggests a transition between two different mechanisms of permeation as the molecular weight is increased. In either regime, the permeation time can be described by a scaling law tau approximately N (b) , with b = (4)/ 3 for short chains and b = (1)/ 3 for long chains. We discuss these exponents, which clearly differ from the theoretical predictions for chain translocation.  相似文献   

15.
首先将(马来酸酐-醋酸乙烯酯共聚物)核/(马来酸酐-二乙烯基苯共聚物)壳微球的壳层外表面酐基烷基溴化,然后将核溶蚀、壳层内表面酐基水解,制得内表面含亲水羧基、外表面含烷基溴、具有微孔(Barrett-Joyner-Halenda平均孔径14.9nm)的空心聚合物微球.以此空心微球为微反应器,使Fe2+和Fe3+通过球壁...  相似文献   

16.
The changes in the morphology and the mechanical properties of hollow polyelectrolyte multilayer capsules made from poly(styrenesulfonate)/poly(allylamine hydrochloride) in response to added salt were investigated. We found that capsules shrink in response to salt exposure. The effect depends strongly on the nature of the salt added and follows trends of the Hoffmeister series, with weakly hydrated cations inducing the strongest shrinking. For NaCl, we have investigated additional effects on capsule mechanical properties that are occurring above a 3 M salt concentration and we found that the morphological changes are accompanied by a pronounced softening of the capsule wall material, which we can quantify by analyzing the force response of capsules in the prebuckling regime. This shows that salts can act as plasticizers in the multilayers and induce annealing effects.  相似文献   

17.
Monodisperse stimuli-responsive hydrogel capsules were synthesized in the 100-nm-diameter to 10-μm-diameter range from poly(4-vinylpyridine) (P4VP) and poly(ethyleneimine) (PEI) through a simple, efficient two-step cross-linking-precipitation template method under conditions of a good solvent. In this method, the core-shell particles were obtained by the deposition (heterocoagulation mechanism) of the cross-linked P4VP, PEI, or their mixtures on the surfaces of the template colloidal silica particles in nitromethane (for PEI) or a nitromethane-acetone mixture (for P4VP and P4VP-PEI mixtures) in the presence of cross-linker 1,4-diiodobutane. The cross-linked polymeric shell swollen in a good solvent stabilized the core-shell colloids. This mechanism provided the conditions for the synthesis of core-shell colloids in a submicrometer range of dimensions with an easily adjusted shell thickness (wall of the capsules) ranging from a few to hundreds of nanometers. The chemical composition of the shell was tuned by varying the ratio of co-cross-linked shell-forming polymers (P4VP and PEI). In the second step, the hollow capsules were obtained by etching the silica core in HF solutions. In this step, the colloidal stability of the hollow capsules was provided by ionized P4VP and PEI cross-linked shells. The hollow capsules demonstrate that the pH- and ionic-strength-triggered swelling and shrinking result in size-selective uptake and release properties. Cross-linked via quaternized functional groups, P4VP capsules undergo swelling and shrinking transitions at a physiologically relevant pH of around 6. The 200-nm-diameter hollow capsule with 25-nm-thick walls demonstrated a factor of 2 greater capacity to accommodate cargo molecules than the core-shell particles of the same dimensions because of an internal compartment and a combination of radial and a circumferential swelling modes in the capsules.  相似文献   

18.
Magnetoresponsive hybrid capsules formed with polyelectrolytes, amphiphile bilayers and Fe(3)O(4) nanoparticles were fabricated by a colloid-templating technique. Melamine-formaldehyde (MF) core particles with polyelectrolyte multilayer shell were prepared by layer-by-layer assembly. Fe(3)O(4) nanoparticles were additionally deposited on the capsular surface. Hollow capsules were obtained by the removal of the MF core particles. Amphiphile bilayer was finally coated on the obtained hollow capsules. The deposition amount of the Fe(3)O(4) nanoparticles is variable by changing the concentration of Fe(3)O(4) dispersion using for preparation of capsules. Encapsulated dyes were released on-demand by irradiation with an alternating magnetic field, due to a phase transition in the amphiphile membrane, induced by heating of the magnetic nanoparticles. The release rate of the hybrid capsules was controllable through controlling the deposition amount of Fe(3)O(4) nanoparticles on the capsules.  相似文献   

19.
By using a surface-modified templating method, Fe(2)O(3)@polypyrrole (PPy) core/shell spindles have been successfully prepared in this paper. The Fe(2)O(3) particles with spindle morphology were initially fabricated as core materials. After the PVP modification, the Fe(2)O(3) spindles were subsequently coated with a tunable thickness layer of PPy by in situ deposition of the conducting polymer from aqueous solution. Hollow PPy spindles were produced by dissolution of the Fe(2)O(3) core from the core/shell particles. High-temperature treatment under vacuum condition covert the hollow PPy spindles into carbon capsules by carbonization of the PPy shell. Transmission electron microscope (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) confirmed the formation of the Fe(2)O(3)@PPy core/shell particles, PPy and carbon capsules with spindle morphology.  相似文献   

20.
Fabrication of micro reaction cages with tailored properties   总被引:3,自引:0,他引:3  
Hollow polyelectrolyte capsules in micro- and submicrometer size were prepared. Their interior was functionalized by a "ship in bottle" synthesis of copolymers. While the monomers permeated the capsule wall easily, the formed polymers remained in the capsule cage. The physicochemical properties of the capsule interior such as ion strength, pH, light absorption, and fluorescence could be controlled independently from the surrounding solvent by means of the chemical nature of the captured polymer. In case of polyelectrolytes the osmotic pressure of the counterions led to a swelling of the capsules which can be important for micromechanics. The functionalization with light-sensitive materials allowed selective photoreactions inside the capsules. Synthesis of polyelectrolytes at high concentration resulted in an intertwining of the capsule wall with the polymer. The modified walls behaved like ion exchange membranes and showed selectivity toward adsorption and permeation of organic ions. The modified capsules offer many possibilities for novel applications as containers for controlled precipitation, as nanoreactors for catalyzed reactions, or as sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号